Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix bugs in CAST string to integer #2919

Merged
merged 17 commits into from
Jul 16, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
109 changes: 73 additions & 36 deletions sql-plugin/src/main/scala/com/nvidia/spark/rapids/GpuCast.scala
Original file line number Diff line number Diff line change
Expand Up @@ -175,6 +175,69 @@ object GpuCast extends Arm {
cv.stringReplaceWithBackrefs(rule.search, rule.replace)
})
}

def sanitizeStringToIntegralType(input: ColumnVector, ansiEnabled: Boolean): ColumnVector = {
// Convert any strings containing whitespace to null values. The input is assumed to already
// have been stripped of leading and trailing whitespace
val sanitized = withResource(input.containsRe("\\s")) { hasWhitespace =>
withResource(hasWhitespace.any()) { any =>
if (any.getBoolean) {
if (ansiEnabled) {
throw new NumberFormatException(GpuCast.INVALID_INPUT_MESSAGE)
} else {
withResource(GpuScalar.from(null, DataTypes.StringType)) { nullVal =>
hasWhitespace.ifElse(nullVal, input)
}
}
} else {
input.incRefCount()
}
}
}

if (ansiEnabled) {
// ansi mode only supports simple integers, so no exponents or decimal places
val regex = "^[+\\-]?[0-9]+$"
withResource(sanitized.matchesRe(regex)) { isInt =>
withResource(isInt.all()) { allInts =>
// Check that all non-null values are valid integers. Note that allInts will be false
// if all rows are null so we need to check for that condition.
if (!allInts.getBoolean && sanitized.getNullCount != sanitized.getRowCount) {
throw new NumberFormatException(GpuCast.INVALID_INPUT_MESSAGE)
}
}
sanitized
}
} else {
// truncate strings that represent decimals, so that we just look at the string before the dot
withResource(sanitized) { _ =>
withResource(Scalar.fromString(".")) { dot =>
withResource(sanitized.stringContains(dot)) { hasDot =>
// only do the decimal sanitization if any strings do contain dot
withResource(hasDot.any(DType.BOOL8)) { anyDot =>
if (anyDot.getBoolean) {
// Special handling for strings that have no numeric value before the dot, such
// as "." and ".1" because extractsRe returns null for the capture group
// for these values and it also returns null for invalid inputs so we need this
// explicit check
withResource(sanitized.matchesRe("^[+\\-]?\\.[0-9]*$")) { startsWithDot =>
withResource(sanitized.extractRe("^([+\\-]?[0-9]*)\\.[0-9]*$")) { table =>
withResource(Scalar.fromString("0")) { zero =>
withResource(startsWithDot.ifElse(zero, table.getColumn(0))) {
decimal => hasDot.ifElse(decimal, sanitized)
}
}
}
}
} else {
sanitized.incRefCount()
}
}
}
}
}
}
}
}

/**
Expand Down Expand Up @@ -681,47 +744,21 @@ case class GpuCast(
input: ColumnVector,
ansiEnabled: Boolean,
dType: DType): ColumnVector = {
val cleaned = if (!ansiEnabled) {
// TODO would be great to get rid of this regex, but the overflow checks don't work
// on the more lenient pattern.
// To avoid doing the expensive regex all the time, we will first check to see if we need
// to do it. The only time we do need to do it is when we have a '.' in any of the strings.
val data = input.getData
val hasDot = if (data != null) {
withResource(
ColumnView.fromDeviceBuffer(data, 0, DType.INT8, data.getLength.toInt)) { childData =>
withResource(GpuScalar.from('.'.toByte, ByteType)) { dot =>
childData.contains(dot)
}
}
} else {
false
}

if (hasDot) {
withResource(input.extractRe("^([+\\-]?[0-9]+)(?:\\.[0-9]*)?$")) { table =>
table.getColumn(0).incRefCount()
}
} else {
input.incRefCount()
}
} else {
input.incRefCount()
}
withResource(cleaned) { cleaned =>
withResource(cleaned.isInteger(dType)) { isInt =>
withResource(GpuCast.sanitizeStringToIntegralType(input, ansiEnabled)) { sanitized =>
withResource(sanitized.isInteger(dType)) { isInt =>
if (ansiEnabled) {
withResource(isInt.all()) { allInts =>
if (!allInts.getBoolean) {
throw new NumberFormatException(GpuCast.INVALID_INPUT_MESSAGE)
// Check that all non-null values are valid integers. Note that allInts will be false
// if all rows are null so we need to check for that condition.
if (!allInts.getBoolean && sanitized.getNullCount != sanitized.getRowCount) {
throw new IllegalStateException(GpuCast.INVALID_INPUT_MESSAGE)
}
}
cleaned.castTo(dType)
} else {
withResource(cleaned.castTo(dType)) { parsedInt =>
withResource(GpuScalar.from(null, dataType)) { nullVal =>
isInt.ifElse(parsedInt, nullVal)
}
}
withResource(sanitized.castTo(dType)) { parsedInt =>
withResource(GpuScalar.from(null, dataType)) { nullVal =>
isInt.ifElse(parsedInt, nullVal)
}
}
}
Expand Down
134 changes: 104 additions & 30 deletions tests/src/test/scala/com/nvidia/spark/rapids/CastOpSuite.scala
Original file line number Diff line number Diff line change
Expand Up @@ -24,12 +24,13 @@ import java.util.TimeZone

import ai.rapids.cudf.ColumnVector
import scala.collection.JavaConverters._
import scala.util.Random
import scala.util.{Failure, Random, Success, Try}

import org.apache.spark.SparkConf
import org.apache.spark.sql.{DataFrame, Row, SparkSession}
import org.apache.spark.sql.catalyst.expressions.{AnsiCast, Cast}
import org.apache.spark.sql.functions.col
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.types._

class CastOpSuite extends GpuExpressionTestSuite {
Expand Down Expand Up @@ -78,27 +79,50 @@ class CastOpSuite extends GpuExpressionTestSuite {
"f", "F", "True", "TRUE", "true", "tRuE", "t", "T", "Y", "y", "10", "01", "0", "1"))
}

ignore("Cast from string to byte using random inputs") {
// Test ignored due to known issues
// https://github.com/NVIDIA/spark-rapids/issues/2899
test("Cast from string to byte using random inputs") {
testCastStringTo(DataTypes.ByteType, generateRandomStrings(Some(NUMERIC_CHARS)))
}

ignore("Cast from string to short using random inputs") {
// Test ignored due to known issues
// https://github.com/NVIDIA/spark-rapids/issues/2899
test("Cast from string to short using random inputs") {
testCastStringTo(DataTypes.ShortType, generateRandomStrings(Some(NUMERIC_CHARS)))
}

ignore("Cast from string to int using random inputs") {
// Test ignored due to known issues
// https://github.com/NVIDIA/spark-rapids/issues/2899
test("Cast from string to int using random inputs") {
testCastStringTo(DataTypes.IntegerType, generateRandomStrings(Some(NUMERIC_CHARS)))
}

ignore("Cast from string to long using random inputs") {
// Test ignored due to known issues
// https://github.com/NVIDIA/spark-rapids/issues/2899
test("Cast from string to int using hand-picked values") {
testCastStringTo(DataTypes.IntegerType, Seq(".--e-37602.n", "\r\r\t\n11.12380", "-.2", ".3",
".", "+1.2", "\n123\n456\n", "1e+4"))
}

test("Cast from string to int ANSI mode with mix of valid and invalid values") {
testCastStringTo(DataTypes.IntegerType, Seq(".--e-37602.n", "\r\r\t\n11.12380", "-.2", ".3",
".", "+1.2", "\n123\n456\n", "1 2", null, "123"), ansiMode = AnsiExpectFailure)
}

test("Cast from string to int ANSI mode with valid values") {
testCastStringTo(DataTypes.IntegerType, Seq("1", "-1"),
ansiMode = AnsiExpectSuccess)
}

test("Cast from string to int ANSI mode with invalid values") {
val values = Seq("1e4", "Inf", "1.2")
// test the values individually
for (value <- values ) {
testCastStringTo(DataTypes.IntegerType, Seq(value), ansiMode = AnsiExpectFailure)
}
}

test("Cast from string to int ANSI mode with nulls") {
testCastStringTo(DataTypes.IntegerType, Seq(null, null, null), ansiMode = AnsiExpectSuccess)
}

test("Cast from string to int ANSI mode with newline in string") {
testCastStringTo(DataTypes.IntegerType, Seq("1\n2"), ansiMode = AnsiExpectFailure)
}

test("Cast from string to long using random inputs") {
testCastStringTo(DataTypes.LongType, generateRandomStrings(Some(NUMERIC_CHARS)))
}

Expand Down Expand Up @@ -151,7 +175,10 @@ class CastOpSuite extends GpuExpressionTestSuite {
.map(_ => prefix.getOrElse("") + r.nextString())
}

private def testCastStringTo(toType: DataType, strings: Seq[String]) {
private def testCastStringTo(
toType: DataType,
strings: Seq[String],
ansiMode: AnsiTestMode = AnsiDisabled) {

def castDf(spark: SparkSession): Seq[Row] = {
import spark.implicits._
Expand All @@ -164,30 +191,48 @@ class CastOpSuite extends GpuExpressionTestSuite {
val INDEX_C0 = 0
val INDEX_C1 = 2

val cpu = withCpuSparkSession(castDf)
.sortBy(_.getInt(INDEX_ID))
val ansiModeBoolString = (ansiMode != AnsiDisabled).toString

val cpuConf = new SparkConf()
.set(SQLConf.ANSI_ENABLED.key, ansiModeBoolString)

val tryCpu = Try(withCpuSparkSession(castDf, cpuConf)
.sortBy(_.getInt(INDEX_ID)))

val conf = new SparkConf()
val gpuConf = new SparkConf()
.set(SQLConf.ANSI_ENABLED.key, ansiModeBoolString)
.set(RapidsConf.EXPLAIN.key, "ALL")
.set(RapidsConf.INCOMPATIBLE_DATE_FORMATS.key, "true")
.set(RapidsConf.ENABLE_CAST_STRING_TO_TIMESTAMP.key, "true")
.set(RapidsConf.ENABLE_CAST_STRING_TO_FLOAT.key, "true")
.set(RapidsConf.ENABLE_CAST_STRING_TO_DECIMAL.key, "true")
.set(RapidsConf.ENABLE_CAST_STRING_TO_INTEGER.key, "true")

val gpu = withGpuSparkSession(castDf, conf)
.sortBy(_.getInt(INDEX_ID))

for ((cpuRow, gpuRow) <- cpu.zip(gpu)) {
assert(cpuRow.getString(INDEX_C0) === gpuRow.getString(INDEX_C0))
assert(cpuRow.getInt(INDEX_ID) === gpuRow.getInt(INDEX_ID))
val cpuValue = cpuRow.get(INDEX_C1)
val gpuValue = gpuRow.get(INDEX_C1)
if (!compare(cpuValue, gpuValue)) {
val inputValue = cpuRow.getString(INDEX_C0)
fail(s"Mismatch casting string [$inputValue] " +
s"to $toType. CPU: $cpuValue; GPU: $gpuValue")
}
val tryGpu = Try(withGpuSparkSession(castDf, gpuConf)
.sortBy(_.getInt(INDEX_ID)))

(tryCpu, tryGpu) match {
case (Success(cpu), Success(gpu)) if ansiMode != AnsiExpectFailure =>
for ((cpuRow, gpuRow) <- cpu.zip(gpu)) {
assert(cpuRow.getString(INDEX_C0) === gpuRow.getString(INDEX_C0))
assert(cpuRow.getInt(INDEX_ID) === gpuRow.getInt(INDEX_ID))
val cpuValue = cpuRow.get(INDEX_C1)
val gpuValue = gpuRow.get(INDEX_C1)
if (!compare(cpuValue, gpuValue)) {
val inputValue = cpuRow.getString(INDEX_C0)
fail(s"Mismatch casting string [$inputValue] " +
s"to $toType. CPU: $cpuValue; GPU: $gpuValue")
}
}

case (Failure(_), Failure(_)) if ansiMode == AnsiExpectFailure =>
// this is fine

case (Success(_), Failure(gpu)) =>
fail(s"Query succeeded on CPU but failed on GPU: $gpu")

case (Failure(cpu), Success(_)) =>
fail(s"Query succeeded on GPU but failed on CPU: $cpu")
}
}

Expand Down Expand Up @@ -831,6 +876,30 @@ class CastOpSuite extends GpuExpressionTestSuite {
}
}

test("CAST string to integer - sanitize step") {
val testPairs: Seq[(String, String)] = Seq(
(null, null),
("1e4", "1e4"),
("123", "123"),
(".", "0"),
(".2", "0"),
("-.2", "0"),
("0.123", "0"),
("321.123", "321"),
("0.123\r123", null),
(".\r123", null)
)
val inputs = testPairs.map(_._1)
val expected = testPairs.map(_._2)
withResource(ColumnVector.fromStrings(inputs: _*)) { v =>
withResource(ColumnVector.fromStrings(expected: _*)) { expected =>
withResource(GpuCast.sanitizeStringToIntegralType(v, ansiEnabled = false)) { actual =>
CudfTestHelper.assertColumnsAreEqual(expected, actual)
}
}
}
}

test("CAST string to date - sanitize step") {
val testPairs = Seq(
("2001-1", "2001-01"),
Expand Down Expand Up @@ -1294,3 +1363,8 @@ object CastOpSuite {
private val timestampValues: Seq[Long] = Seq(6321706291000L)

}

sealed trait AnsiTestMode;
case object AnsiDisabled extends AnsiTestMode
case object AnsiExpectSuccess extends AnsiTestMode
case object AnsiExpectFailure extends AnsiTestMode