适用于anomalib导出的onnx格式的模型
测试了patchcore,fastflow,efficient_ad模型
# 模型配置文件中设置为onnx,导出openvino会导出onnx
optimization:
export_mode: onnx # options: torch, onnx, openvino
使用
trtexec
转换模型
trtexec --onnx=model.onnx --saveEngine=model.engine
# 动态batch,model.onnx的batch为动态的 input为输入名字, 1, 4, 8要手动指定
trtexec --onnx=model.onnx --saveEngine=model.engine --minShapes=input:1x3x256x256 --optShapes=input:4x3x256x256 --maxShapes=input:8x3x256x256
patchcore模型训练配置文件需要调整center_crop为
center_crop: null
只缩放图片,不再剪裁图片
使用efficient_ad模型需要给
Inference
添加bool efficient_ad = true
参数 原因是efficient_ad模型的标准化在模型中做了,不需要在外部再做
#include "inference.hpp"
#include <opencv2/opencv.hpp>
int main() {
// patchcore模型训练配置文件调整center_crop为 `center_crop: null`
// trtexec --onnx=model.onnx --saveEngine=model.engine 转换模型
string model_path = "D:/ml/code/anomalib/results/efficient_ad/mvtec/bottle/run/weights/openvino/model.engine";
string meta_path = "D:/ml/code/anomalib/results/efficient_ad/mvtec/bottle/run/weights/openvino/metadata.json";
string image_path = "D:/ml/code/anomalib/datasets/MVTec/bottle/test/broken_large/000.png";
string image_dir = "D:/ml/code/anomalib/datasets/MVTec/bottle/test/broken_large";
string save_dir = "D:/ml/code/anomalib-tensorrt-cpp/result"; // 注意目录不会自动创建,要手动创建才会保存
bool efficient_ad = true; // 是否使用efficient_ad模型
// 创建推理器
auto inference = Inference(model_path, meta_path, efficient_ad);
// 单张图片推理
cv::Mat image = readImage(image_path);
Result result = inference.single(image);
saveScoreAndImages(result.score, result.anomaly_map, image_path, save_dir);
cv::resize(result.anomaly_map, result.anomaly_map, { 2000, 500 });
cv::imshow("result", result.anomaly_map);
cv::waitKey(0);
// 多张图片推理
inference.multi(image_dir, save_dir);
return 0;
}
- 方法1(需要重新训练或导出onnx)
在导出代码中添加一行https://github.com/openvinotoolkit/anomalib/blob/main/src/anomalib/deploy/export.py#L155
torch.onnx.export( model.model, torch.zeros((1, 3, *input_size)).to(model.device), str(onnx_path), opset_version=11, input_names=["input"], output_names=["output"], dynamic_axes={"input": {0: "batch_size"}, "output": {0: "batch_size"}} # add this line to support dynamic batch )
- 方法2(不需要重新训练模型,但不保证成功)
使用 onnx-modifier 将模型的batch调整为动态的
# 动态batch,model.onnx的batch为动态的 input为输入名字, 1, 4, 8要手动指定,256为输出尺寸
trtexec --onnx=model.onnx --saveEngine=model.engine --minShapes=input:1x3x256x256 --optShapes=input:4x3x256x256 --maxShapes=input:8x3x256x256
需要显式指定
dynamic_batch_size
,范围在设定的minShapes
和maxShapes
之间
#include "inference.hpp"
#include <opencv2/opencv.hpp>
int main() {
// patchcore模型训练配置文件调整center_crop为 `center_crop: null`
// trtexec --onnx=model.onnx --saveEngine=model.engine 转换模型
// 动态batch,model.onnx的batch为动态的 input为输入名字, 1, 4, 8要手动指定
// trtexec --onnx=model.onnx --saveEngine=model.engine --minShapes=input:1x3x256x256 --optShapes=input:4x3x256x256 --maxShapes=input:8x3x256x256
string model_path = "D:/ml/code/anomalib/results/efficient_ad/mvtec/bottle/run/weights/openvino/model.engine";
string meta_path = "D:/ml/code/anomalib/results/efficient_ad/mvtec/bottle/run/weights/openvino/metadata.json";
string image_dir = "D:/ml/code/anomalib/datasets/MVTec/bottle/test/broken_large";
bool efficient_ad = true; // 是否使用efficient_ad模型
bool dynamic_batch = true; // 使用dynamic_batch,分配最大batch_size显存
int dynamic_batch_size = 2; // 显式指定batch,要在最小和最大batch之间
// 创建推理器
auto inference = Inference(model_path, meta_path, efficient_ad, dynamic_batch);
// 读取全部图片路径
vector<cv::String> paths = getImagePaths(image_dir);
// batch为几就输入几张图片
vector<cv::Mat> images;
for (int i = 0; i < dynamic_batch_size; i++) {
cv::Mat image = cv::imread(paths[i]);
cv::cvtColor(image, image, cv::ColorConversionCodes::COLOR_BGR2RGB);
images.push_back(image);
}
// 推理
vector<Result> results = inference.dynamicBatchInfer(images);
// 查看结果
for (int i = 0; i < dynamic_batch_size; i++) {
cout << results[i].score << endl;
cv::resize(results[i].anomaly_map, results[i].anomaly_map, { 2000, 500 });
cv::imshow(std::to_string(i), results[i].anomaly_map);
}
cv::waitKey(0);
return 0;
}
下载安装cuda,cudnn,tensorrt
CUDA Toolkit Archive | NVIDIA Developer
cuDNN Archive | NVIDIA Developer
NVIDIA Developer Program Membership Required | NVIDIA Developer
测试tensorrt版本:8.6.1
# opencv
$opencv_path\build\x64\vc16\bin
# tensorrt
$tensorrt\bin
$tensorrt\lib
include文件夹是rapidjson的文件,用来解析json
cmake版本要设置
CMakeLists.txt
中 opencv,tensorrt 路径为自己的路径
https://github.com/lucasg/Dependencies 这个工具可以查看exe工具是否缺失dll
处理json使用了rapidjson https://rapidjson.org/zh-cn/
opencv方式参考了mmdeploy https://github.com/open-mmlab/mmdeploy/tree/master/csrc/mmdeploy/utils/opencv