Symbolic math library for Elixir, with unit support.
Beta state.
Cannot belive in Elixir 1-0.8 == 0.19999999999999996
This is a big deal, if you can't trust in this basic operation you have a problem. I've reformulated {:numb,b} to {:numb, numerator, denominator} in a try to keep accuracy for the usual operations, specially for exponents algebraic.
'eval new "1-0.8"' returns "0.2", and 'eval new("0.1+0.1+0.1")' returns "0.3", the same operation in iex returns "0.30000000000000004".
All test passed. Version 0.5.0 is renewed completely for programatic use. Created Exun struct that holds ast and context, and created to_string and inspect on it. Maybe i can create macros to use *,+,-,/ with %Exun{}
TODO:
- Temperature unit conversions
- Summatory
- End Matrix and Vector support.
DONE:
- Symbolic math pattern match expressions
- Derivate
- Simple integration (pol, trig, ln), miss parts and subst
- Units (factorize, conversion, operation, user definition)
- Context definition for vars and funcs
- Functions and User functions
- Partially implemented Multiprocess, make reductions in parallell via Tasks
- Define equations, not only expressions: Isolate variables
- Fractions, to avoid decimal ops
- Add more testing and revise docs
run "iex -S mix" inside exun dir and type:
import Exun
import Exun.Unit
eval2str "(1+a)*(a+1)/(a+1)^3"
"1/(1+a)"
eval2str "1[m]+1[cm]"
"1.01[m]"
factorize "1[A*Kg*m/s^2]","[slug*cm]"
"6.852176585682165[cm*slug*A/s^2]"
"120[Km/h]" |> convert("m/s")
"33.333333333333336[m/s]"
Call Exun.Unit.help for a list of supported units, you can also add new units via context (a map that holds definitions you can use inside expression)
eval "25[Km/h]+14[myunit^2]", %{ "myunit" => "(m/s)^0.5" }
"20.944444444444443[m/s]"
You can put 'context' also, passing a map that defines values for variables:
eval2str "(a+1)^2/b", %{"b"=>"a+1"}
"1+a"
eval2str "(a+b)^2/c", %{"a"=>"20[m]","b"=>"2[cm]","c"=>"3[s^2]"}
"133.60013333333333[m^2/s^2]"
Derivate and support some functions (trigonometrics, hyperbolics, ln): Operator ' is derivate, so "f'x" is df(x)/dx; rule "expr'var" means derivate 'expr' for 'var'.
eval2str "((1+x)^2)'x"
"2*(1+x)"
eval2str "sin(2*x)'x"
"2*cos(2*x)"
eval2str "(x^2+x)'x+1"
"2*(1+x)"
Define functions in context Vars and functions can be named with the same name, like in elixir, arity in a name makes it different so:
Exun.eval2str "f*f(y)*f(y,3)", %{"f"=>"3", "f(x)"=>"x^2", "f(a,b)"=>"a^2+a*b+b^2"}
"3*y^2*(9+3*y+y^2)"
Exun.eval2str " f * f(x)'x * f(y)", %{"f"=>"3", "f(x)"=>"x^2"}
"6*x*y^2"
Integrate simple expression, not yet implemented Parts or Subst methods. Symbol for integration is $, rule "$expr,var" means integrate 'expr' for 'var'
iex(1)> Exun.eval2str "$3*x^2+2*x+1,x"
"x*(1+x*(1+x))"
iex(5)> Exun.eval2str "$sin(x),x"
"-cos(x)"
iex(6)> Exun.eval2str "$ln(f(x)),x"
"x*ln(f(x))-($(x/f(x)),x)"
Pattern Match expressions in module Pattern:
import Exun.Pattern
iex(1)> umatch "u*v'x","x*cos(x)"
Match group ok
u = x
v'x = cos(x)
Match group ok
u = x*cos(x)
v'x = 1
Match group ok
u = cos(x)
v'x = x
Match group ok
u = 1
v'x = x*cos(x)
Buggy...
iex(2)> umatch "g'x*g^n", "3*x^2*(x^3+1)^2"
Match group ok
g = 1+x^3
n = 2
g'x = 3*x^2
:ok
iex(3)> umatch("g(y)+f'x","1+x+y")
Match group ok
f => x+0.5*x^2
f' => x+1
g => y
Match group ok
f => x+0.5*x^2
f' => 1+x
g => y
Match group ok
f => 0.5*x^2
f' => x
g => y+1
...
:ok
iex(4)> umatch("f(2*x)","sin(2*x)")
Match group ok
f => sin
x => x
:ok
iex(5)> umatch("f*f'x","sin(x)*cos(x)"
Match group ok
f = sin(x)
:ok
Isolation, Module Exun.Isol can isolate an ast from a tree. It extracts all instances of ast from the equation, so it can return more than one result. Ast can be any valid ast, not only a variable ({:vari, name}) For example:
iex(1)> import Exun.Isol
Exun.Isol
iex(2)> import Exun
Exun
iex(3)> import Exun.UI
Exun.UI
iex(4)> isol (parse_text "x^2-3=13"), (parse_text "x")
[ok: {:numb, 4}]
iex(5)> mp1=isol (parse_text "x^2+sin(x)-3=13"), (parse_text "x")
[
ok: {:fcall, "asin",
[{{:m, :suma}, [numb: 16, minus: {:elev, {:vari, "x"}, {:numb, 2}}]}]},
ok: {:fcall, "exp",
[
{{:m, :mult},
[
{:numb, 0.5},
{:fcall, "ln",
[{{:m, :suma}, [numb: 16, minus: {:fcall, "sin", [vari: "x"]}]}]}
]},
{:numb, 2}
]}
]
iex(6)> mp1 |> Enum.map(fn {_,sol} -> tostr(sol)end)
["asin(16-x^2)", "exp(0.5*ln(16-sin(x)),2)"]
iex(7)> mp1=isol (parse_text "x^2+sin(x)-3=13"), (parse_text "x^2")
[ok: {{:m, :suma}, [numb: 16, minus: {:fcall, "sin", [vari: "x"]}]}]
iex(8)> mp1 |> Enum.map(fn {_,sol} -> tostr(sol)end)
["16-sin(x)"]
I've createt the vector and matrix types in yecc, and a module Exun.Matrix, want to create basic algebraic (+,-,*,/) for those concepts and may be eigenvalues for nxn symbolic matrices. The elements for now are symbolic also, so you will be able to write something like the example below. The symbols for matrix and vector are '{}'.
iex> mat = Exun.new "{{x^2,x,1},{sin(x),cos(x),tan(x)},{1,2,3}}"
#Exun {{x^2,x,1},{sin(x),cos(x),tan(x)},{1,2,3}}
iex> import Exun.Matrix
iex> import Exun.UI
iex> det mat
#Exun -(cos(x)*-tan(x)+cos(x)*tan(x))-(x*cos(x)*-tan(x)+x*cos(x)*tan(x))
iex> Exun.Matrix.uni_m 4
{{:unity, 4, 4}, nil}
iex> Exun.Matrix.pol_m [{:numb,1,1},{:numb,2,1},{:numb,3,1},{:vari,"x"}]
{{:polynom, 3, 3},
[
{:elev, {:vari, "x"}, {:numb, -1}},
{{:m, :mult}, [{:numb, 2}, {:elev, {:vari, "x"}, {:numb, -1}}]},
{{:m, :mult}, [{:numb, 3}, {:elev, {:vari, "x"}, {:numb, -1}}]}
]}
Multiprocess. Base measurement for speed will be the brutal expression:
iex(5)> :timer.tc(Exun,:eval,["(g(a^b,b^a)/g(b^a,a^b))'a", %{"g(x,y)"=>"(x^y/ln(sinh(y^x))+y^tanh(x)/cos(x*y))'x'y'x"}])
{5327979,
"(-(-4*(-2*(-a^b^(1+a)*b^a^(1+b)/sinh(b^a^(1+b))*cosh(b^a^(1+b))*ln(b" <> ...}
If you are interested in parsing, use 'new' to create an Exun struct, and its field 'ast' to show the expression AST.
iex(2)> exp = Exun.new "(a+b)^2/c"
#Exun ((a+b)^2)/c
iex(3)> exp.ast
{{:m, :mult},
[
{:elev, {:vari, "c"}, {:numb, -1, 1}},
{:elev, {{:m, :suma}, [vari: "a", vari: "b"]}, {:numb, 2, 1}}
]}
This library use an AST built with erlang's yecc parser and transformation in elixir like this:
def mk({:suma, a, @zero}), do: mk(a)
def mk({:suma, {:numb, n1}, {:numb, n2}}), do: {:numb, n1 + n2}
def mk({:suma, {:numb, _}, {:unit, _, _}}), do: throw(@invalid_unit_operation)
If available in Hex, the package can be installed
by adding exun
to your list of dependencies in mix.exs
:
def deps do
[
{:exun, "~> 0.4.4"}
]
end
Documentation can be generated with ExDoc and published on HexDocs. Once published, the docs can be found at https://hexdocs.pm/exun.