forked from calcmogul/controls-engineering-in-frc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
glossary-entries.tex
197 lines (197 loc) · 8.69 KB
/
glossary-entries.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
\newglossaryentry{agent}{
name={agent},
description={An independent actor being controlled through autonomy or
human-in-the-loop (e.g., a robot, aircraft, etc.).}}
\newglossaryentry{control effort}{
name={control effort},
description={A term describing how much force, pressure, etc. an actuator is
exerting.}}
\newglossaryentry{control input}{
name={control input},
description={The input of a \gls{plant} used for the purpose of controlling
it.}}
\newglossaryentry{control law}{
name={control law},
description={Also known as control policy, is a mathematical formula used by
the \gls{controller} to determine the \gls{input} u that is sent to the
\gls{plant}. This control law is designed to drive the \gls{system} from its
current \gls{state} to some other desired \gls{state}.}}
\newglossaryentry{control system}{
name={control system},
description={Monitors and controls the behavior of a \gls{system}.}}
\newglossaryentry{controller}{
name={controller},
description={Applies an \gls{input} to a \gls{plant} to bring about a desired
\gls{system} \gls{state} by driving the difference between a \gls{reference}
signal and the \gls{output} to zero.}}
\newglossaryentry{discretization}{
name={discretization},
description={The process by which a continuous (e.g., analog) \gls{system} or
\gls{controller} design is converted to discrete (e.g., digital).}}
\newglossaryentry{disturbance}{
name={disturbance},
description={An external force acting on a \gls{system} that isn't included in
the \gls{system}'s \gls{model}.}}
\newglossaryentry{disturbance rejection}{
name={disturbance rejection},
description={The quality of a feedback control \gls{system} to compensate for
external forces to reach a desired \gls{reference}.}}
\newglossaryentry{error}{
name={error},
description={\Gls{reference} minus an \gls{output} or \gls{state}.}}
\newglossaryentry{feedback controller}{
name={feedback controller},
description={Used in positive or negative feedback with a \gls{plant} to bring
about a desired \gls{system} \gls{state} by driving the difference between a
\gls{reference} signal and the \gls{output} to zero.}}
\newglossaryentry{feedback gain}{
name={feedback gain},
description={The gain from the \gls{output} to an earlier point in a
\gls{control system} diagram.}}
\newglossaryentry{feedforward controller}{
name={feedforward controller},
description={A \gls{controller} that injects information about the
\gls{system}'s dynamics (like a \gls{model} does) or the desired movement.
The feedforward handles parts of the control actions we already know must be
applied to make a \gls{system} track a \gls{reference}, then the feedback
controller compensates for what we do not or cannot know about the
\gls{system}'s behavior at runtime.}}
\newglossaryentry{gain}{
name={gain},
description={A proportional value that shows the relationship between the
magnitude of an input signal to the magnitude of an output signal at
steady-state.}}
\newglossaryentry{gain margin}{
name={gain margin},
description={See section \ref{sec:gain_phase_margin} on gain and phase
margin.}}
\newglossaryentry{impulse response}{
name={impulse response},
description={The response of a \gls{system} to the Dirac delta function.}}
\newglossaryentry{input}{
name={input},
description={An input to the \gls{plant} (hence the name) that can be used to
change the \gls{plant}'s \gls{state}.}}
\newglossaryentry{linearization}{
name={linearization},
description={A method by which a nonlinear \gls{system}'s dynamics are
approximated by a linear \gls{system}.}}
\newglossaryentry{localization}{
name={localization},
description={The process of using measurements of the environment to determine
an \gls{agent}'s \gls{pose}.}}
\newglossaryentry{model}{
name={model},
description={A set of mathematical equations that reflects some aspect of a
physical \gls{system}'s behavior.}}
\newglossaryentry{noise immunity}{
name={noise immunity},
description={The quality of a \gls{system} to have its performance or
stability unaffected by noise in the \glspl{output} (see also:
\gls{robustness}).}}
\newglossaryentry{observer}{
name={observer},
description={In control theory, a \gls{system} that provides an estimate of
the internal \gls{state} of a given real \gls{system} from measurements of
the \gls{input} and \gls{output} of the real \gls{system}.}}
\newglossaryentry{open-loop gain}{
name={open-loop gain},
description={The gain directly from the \gls{input} to the \gls{output},
ignoring loops.}}
\newglossaryentry{output}{
name={output},
description={Measurements from sensors.}}
\newglossaryentry{output-based control}{
name={output-based control},
description={Controls the \gls{system}'s \gls{state} via the \glspl{output}.}}
\newglossaryentry{overshoot}{
name={overshoot},
description={The amount by which a \gls{system}'s \gls{state} surpasses the
\gls{reference} after rising toward it.}}
\newglossaryentry{phase margin}{
name={phase margin},
description={See section \ref{sec:gain_phase_margin} on gain and phase
margin.}}
\newglossaryentry{plant}{
name={plant},
description={The \gls{system} or collection of actuators being controlled.}}
\newglossaryentry{pose}{
name={pose},
description={The orientation of an \gls{agent} in the world, which is
represented by all or part of the \gls{agent}'s \gls{state}.}}
\newglossaryentry{process variable}{
name={process variable},
description={The term used to describe the \gls{output} of a \gls{plant} in
the context of PID control.}}
\newglossaryentry{realization}{
name={realization},
description={In control theory, this is an implementation of a given
input-output behavior as a state-space \gls{model}.}}
\newglossaryentry{reference}{
name={reference},
description={The desired state. This value is used as the reference point for
a controller's error calculation.}}
\newglossaryentry{regulator}{
name={regulator},
description={A \gls{controller} that attempts to minimize the \gls{error} from
a constant \gls{reference} in the presence of disturbances.}}
\newglossaryentry{rise time}{
name={rise time},
description={The time a \gls{system} takes to initially reach the
\gls{reference} after applying a \gls{step input}.}}
\newglossaryentry{robustness}{
name={robustness},
description={The quality of a feedback \gls{control system} to remain stable
in response to disturbances and uncertainty.}}
\newglossaryentry{setpoint}{
name={setpoint},
description={The term used to describe the \gls{reference} of a PID
controller.}}
\newglossaryentry{settling time}{
name={settling time},
description={The time a \gls{system} takes to settle at the \gls{reference}
after a \gls{step input} is applied.}}
\newglossaryentry{state}{
name={state},
description={A characteristic of a \gls{system} (e.g., velocity) that can be
used to determine the \gls{system}'s future behavior.}}
\newglossaryentry{state feedback}{
name={state feedback},
description={Uses \gls{state} instead of \gls{output} in feedback.}}
\newglossaryentry{steady-state error}{
name={steady-state error},
description={\Gls{error} after \gls{system} reaches equilibrium.}}
\newglossaryentry{step input}{
name={step input},
description={A \gls{system} \gls{input} that is $0$ for $t < 0$ and a constant
greater than $0$ for $t \geq 0$. A step input that is $1$ for $t \geq 0$ is
called a unit step input.}}
\newglossaryentry{step response}{
name={step response},
description={The response of a \gls{system} to a \gls{step input}.}}
\newglossaryentry{stochastic process}{
name={stochastic process},
description={A process whose \gls{model} is partially or completely defined by
random variables.}}
\newglossaryentry{system}{
name={system},
description={A term encompassing a \gls{plant} and its interaction with a
\gls{controller} and \gls{observer}, which is treated as a single entity.
Mathematically speaking, a \gls{system} maps \glspl{input} to \glspl{output}
through a linear combination of \glspl{state}.}}
\newglossaryentry{system response}{
name={system response},
description={The behavior of a \gls{system} over time for a given
\gls{input}.}}
\newglossaryentry{time-invariant}{
name={time-invariant},
description={The \gls{system}'s fundamental response does not change over
time.}}
\newglossaryentry{tracking}{
name={tracking},
description={In control theory, the process of making the output of a
\gls{control system} follow the \gls{reference}.}}
\newglossaryentry{unity feedback}{
name={unity feedback},
description={A feedback network in a \gls{control system} diagram with a
feedback gain of 1.}}