Skip to content

Predict and Backtrack MT19937 PRNG by putting 32 * 624 bits generated numbers. Python "random" standard library uses mt19937, so we can easily crack it.

License

Notifications You must be signed in to change notification settings

NonupleBroken/ExtendMT19937Predictor

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Extend MT19937 Predictor

GitHub Workflow Status GitHub PyPI - Python Version PyPI PyPI - Status

Predict and Backtrack MT19937 PRNG by putting 32 * 624 bits generated numbers.

Python "random" standard library uses mt19937, so we can easily crack it.

Usage

Install

$ pip install extend_mt19937_predictor

Predict

After putting 32 * 624 bits numbers, the internal state is uniquely determined. And the random number can be predicted at will.

import random
from extend_mt19937_predictor import ExtendMT19937Predictor

predictor = ExtendMT19937Predictor()

for _ in range(624):
    predictor.setrandbits(random.getrandbits(32), 32)

for _ in range(1024):
    assert predictor.predict_getrandbits(32) == random.getrandbits(32)
    assert predictor.predict_getrandbits(64) == random.getrandbits(64)
    assert predictor.predict_getrandbits(128) == random.getrandbits(128)
    assert predictor.predict_getrandbits(256) == random.getrandbits(256)

Backtrack

Besides prediction, it can also backtrack the previous random numbers.

import random
from extend_mt19937_predictor import ExtendMT19937Predictor

numbers = [random.getrandbits(64) for _ in range(1024)]

predictor = ExtendMT19937Predictor()

for _ in range(78):
    predictor.setrandbits(random.getrandbits(256), 256)

_ = [predictor.backtrack_getrandbits(256) for _ in range(78)]

for x in numbers[::-1]:
    assert x == predictor.backtrack_getrandbits(64)

Advanced

check param is True by default. It is ok to put more than 32 * 624 bits numbers when initializing. It will automatically check whether the excess number is the same as the predicted number, and also change the internal state.

When setting check param to False, it will directly overwrite the state without checking.

import random
from extend_mt19937_predictor import ExtendMT19937Predictor

predictor = ExtendMT19937Predictor(check=True)

for _ in range(1024):
    predictor.setrandbits(random.getrandbits(32), 32)

for _ in range(1024):
    assert predictor.predict_getrandbits(32) == random.getrandbits(32)
import random
from extend_mt19937_predictor import ExtendMT19937Predictor

predictor = ExtendMT19937Predictor(check=True)

for _ in range(624):
    predictor.setrandbits(random.getrandbits(32), 32)

_ = predictor.setrandbits(0, 32)
# ValueError: this rand number is not correct: 0. should be: 2370104960

Besides "random" standard library function getrandbits, these functions can be predicted.

random
randrange
randint
uniform

But only these functions can be backtracked, because of cannot determine how many times the base functions are called by the others.

random
uniform

Reference

About

Predict and Backtrack MT19937 PRNG by putting 32 * 624 bits generated numbers. Python "random" standard library uses mt19937, so we can easily crack it.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages