-
Notifications
You must be signed in to change notification settings - Fork 0
Certification
-
PCA
-
PC Data - do PCD and PCDB together
-
PC Database
-
PCD Developer do PCDE and PCD together
-
PCDE DevOps
-
PCSE do PCSE and PCNE together
-
PCNE
-
ACE do ACE before PCA
-
CDL do CDL to get familiar with the testing environment
- Binary Authorization - only trusted containers are deployed to GKE or Cloud Run
- non-GKE deployment frameworks like appspot
- Firebase Test Lab iOS and Android testing
- Pub/Sub - triage producer perf
- gke horizontal pod autoscaling
- GKE autopilot security - https://unit42.paloaltonetworks.com/gke-autopilot-vulnerabilities/
- Service Perimeter - https://cloud.google.com/vpc-service-controls/docs/service-perimeters
Google has defined Site Reliability Engineering tenets.
- Emergency Response (MTTR, MTTF)
- Capacity Planning
- Change Management
- Error Budget
- Monitoring (Alerts, Tickets, Logging/Metrics)
- Provisioning
In the Google Professional Cloud DevOps Engineer Certification exam - 25% of the questions are on SRE principles in section 3
See Chapter 4 of "Google Cloud for DevOps Engineers" for the 25 Page SRE section - https://www.google.ca/books/edition/Google_Cloud_for_DevOps_Engineers/DH8zEAAAQBAJ?hl=en&gbpv=1
- https://cloud.google.com/learn/certification/machine-learning-engineer
- 1 time practice test per org - https://docs.google.com/forms/d/e/1FAIpQLSeYmkCANE81qSBqLW0g2X7RoskBX9yGYQu-m1TtsjMvHabGqg/viewform
-
Machine Learning Crash Course https://developers.google.com/machine-learning/crash-course/representation/cleaning-data
-
learn gradient ascent and expand the partial derivative section - "the negative of the gradient vector points into the valley" https://developers.google.com/machine-learning/crash-course/reducing-loss/gradient-descent
-
deep field before deep learning https://esahubble.org/images/heic0611b/ https://simbad.u-strasbg.fr/simbad/sim-id?Ident=Hubble+Ultra+Deep+Field
-
https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software
-
tree classifier using area under the curve - https://dmip.webs.upv.es/papers/ICML2002presentation.pdf - the greater AUC means better positive/negative classification
-
XGBoost - https://xgboost.readthedocs.io/en/stable/tutorials/model.html https://www.analyticsvidhya.com/blog/2018/09/an-end-to-end-guide-to-understand-the-math-behind-xgboost/#:~:text=XGBoost%20is%20a%20machine%20learning,won%20several%20machine%20learning%20competitions.
-
https://codelabs.developers.google.com/vertex_notebook_executor#0
-
https://www.tensorflow.org/guide/tpu#distribution_strategies
-
TPU nodes(gRPC)/VMs(ssh) and twisted topology https://cloud.google.com/tpu/docs/system-architecture-tpu-vm
-
TPU V4 up to 2048 TPU cores - https://cloud.google.com/tpu/docs/supported-tpu-configurations
-
JAX Autograd (automated gradient function) and XLA (Accelerated Linear Algebra - see cuBLAS) https://jax.readthedocs.io/en/latest/
-
https://neptune.ai/blog/retraining-model-during-deployment-continuous-training-continuous-testing
-
hashing or homomorphic encryption https://fastdatascience.com/sensitive-data-machine-learning-model/
-
TensorFlow Data Validation and Pandas https://www.tensorflow.org/tfx/data_validation/get_started
-
TensorFlow from Google Brain https://en.wikipedia.org/wiki/TensorFlow#TensorFlow
-
Batch and Streaming data processing https://beam.apache.org/
-
https://medium.com/mlpoint/pandas-for-machine-learning-53846bc9a98b
-
training with mini-batch gradient descent https://towardsdatascience.com/batch-mini-batch-stochastic-gradient-descent-7a62ecba642a
-
https://en.wikipedia.org/wiki/Regularization_%28mathematics%29
-
training with L1 regularization (prevent overfitting) https://towardsdatascience.com/regularization-in-deep-learning-l1-l2-and-dropout-377e75acc036
-
small normalized wide dataset (reduce feature scaling for training) https://developers.google.com/machine-learning/data-prep/transform/normalization
-
PCA https://www.analyticsvidhya.com/blog/2022/07/principal-component-analysis-beginner-friendly/
-
reduce ML latency https://cloud.google.com/architecture/minimizing-predictive-serving-latency-in-machine-learning#optimizing_models_for_serving
-
https://www.tensorflow.org/guide/keras/serialization_and_saving
-
https://cloud.google.com/vertex-ai/docs/model-registry/introduction
-
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
-
https://cloud.google.com/vertex-ai/docs/workbench/managed/schedule-managed-notebooks-run-quickstart
-
https://cloud.google.com/vertex-ai/docs/pipelines/run-pipeline
-
https://cloud.google.com/architecture/setting-up-mlops-with-composer-and-mlflow
-
https://cloud.google.com/tpu/docs/intro-to-tpu#when_to_use_tpus
-
https://www.tensorflow.org/tutorials/distribute/multi_worker_with_ctl
-
https://cloud.google.com/dlp/docs/transformations-reference#transformation_methods
-
https://cloud.google.com/blog/products/identity-security/next-onair20-security-week-session-guide
-
https://cloud.google.com/tensorflow-enterprise/docs/overview
-
https://developers.google.com/machine-learning/crash-course/representation/cleaning-data
-
https://developers.google.com/machine-learning/testing-debugging/metrics/interpretic
-
https://developers.google.com/machine-learning/crash-course/feature-crosses/video-lecture
-
https://cloud.google.com/vertex-ai/docs/training/hyperparameter-tuning-overview
-
https://cloud.google.com/automl-tables/docs/evaluate#evaluation_metrics_for_regression_models
-
https://developers.google.com/machine-learning/glossary#baseline
-
https://cloud.google.com/ai-platform/training/docs/training-at-scale
-
https://cloud.google.com/ai-platform/training/docs/machine-types#scale_tiers
-
https://cloud.google.com/vertex-ai/docs/training/distributed-training
-
https://cloud.google.com/ai-platform/training/docs/overview#distributed_training_structure
-
https://cloud.google.com/vertex-ai/docs/featurestore/overview#benefits
-
https://cloud.google.com/architecture/ml-on-gcp-best-practices#model-deployment-and-serving
-
https://cloud.google.com/memorystore/docs/redis/redis-overview
-
https://cloud.google.com/vertex-ai/docs/experiments/tensorboard-overview
-
https://cloud.google.com/vertex-ai/docs/ml-metadata/introduction
-
https://cloud.google.com/vertex-ai/docs/pipelines/visualize-pipeline
-
https://cloud.google.com/vertex-ai/docs/model-monitoring/overview
-
https://cloud.google.com/architecture/best-practices-for-ml-performance-cost
-
https://www.tensorflow.org/lite/performance/model_optimization
-
https://www.tensorflow.org/tutorials/images/transfer_learning
-
https://developers.google.com/machine-learning/glossary#calibration-layer
-
https://developers.google.com/machine-learning/testing-debugging/common/overview
-
https://cloud.google.com/bigquery-ml/docs/preventing-overfitting
-
https://www.tensorflow.org/tutorials/keras/overfit_and_underfit
-
https://cloud.google.com/architecture/implementing-deployment-and-testing-strategies-on-gke
-
https://docs.seldon.io/projects/seldon-core/en/latest/analytics/routers.html
-
https://www.tensorflow.org/tutorials/customization/custom_layers
-
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Lambda
-
https://cloud.google.com/vertex-ai/docs/ml-metadata/tracking
-
https://cloud.google.com/architecture/ml-on-gcp-best-practices#operationalized-training
-
https://cloud.google.com/architecture/ml-on-gcp-best-practices#organize-your-ml-model-artifacts
- GCP Flowcharts
- sathishvj - all exam prep
- https://sites.google.com/robertsonmarketing.com/digitalassetdownloadportal/digital-toolkit?authuser=0
- https://docs.google.com/document/d/1geAYSKyh4i44LNYNHxbwggicfjRBkoleGWWfgx-LBI0/edit?resourcekey=0-U_Za7iSr-3Z7zVOtHe7gWQ
- https://aws.amazon.com/partners/training/aws-partner-learning-plans/
- 500 per professional and 300 per associate passed if a current AWS partner (2500/year) - https://partnercentral.awspartner.com/partnercentral2/s/scorecard https://partnercentral.awspartner.com/partnercentral2/s/APFPFundingLandingPage https://partnercentral.awspartner.com/partnercentral2/s/resources?Id=0690L000005I9F5QAK
- https://explore.skillbuilder.aws/learn/lp/1672/aws-solution-architect-professional-certification-partner-learning-plan
- https://aws.amazon.com/certification/certified-cloud-practitioner/ https://d1.awsstatic.com/training-and-certification/docs-cloud-practitioner/AWS-Certified-Cloud-Practitioner_Exam-Guide.pdf
- https://explore.skillbuilder.aws/learn/course/14637/play/82859/overview-and-instructions-official-practice-exams
- https://learn.microsoft.com/en-us/credentials/certifications/exams/az-900/
- https://learn.microsoft.com/en-us/credentials/certifications/resources/study-guides/az-900
- https://learn.microsoft.com/en-us/credentials/certifications/exams/az-900/#two-ways-to-prepare
- https://ignite.microsoft.com/?wt.mc_ID=ignite2023_esc_corp_bn_oo_docsbanner_bigdocsbanner_mslearn
- https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE4J5ea
- after getting your AZ-900 to get faalmiliar with the way azure exams are done - start on your developer/architect certifications
https://learn.microsoft.com/en-us/credentials/certifications/resources/study-guides/az-204