Skip to content

[ECCV 2022] StyleHEAT: A framework for high-resolution editable talking face generation

License

Notifications You must be signed in to change notification settings

OpenTalker/StyleHEAT

Repository files navigation

StyleHEAT: One-Shot High-Resolution Editable Talking Face Generation via Pretrained StyleGAN (ECCV 2022)

paper | project website

News: Audio-Reenactment Module Incoporated

We incorporate SadTalker into our framework to support audio-driven talking head. Thanks for their awesome work!

We add a script for pre-processing checkpoints in bash/download.sh.

Abstract

We investigate the latent feature space of a pre-trained StyleGAN and discover some excellent spatial transformation properties. Based on the observation, we propose a novel unified framework based on a pre-trained StyleGAN that enables a set of powerful functionalities, i.e., high-resolution video generation, disentangled control by driving video or audio, and flexible face editing.

Environment

git clone https://github.com/FeiiYin/StyleHEAT.git
cd StyleHEAT
conda create -n StyleHEAT python=3.7
conda activate StyleHEAT
pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 -f https://download.pytorch.org/whl/torch_stable.html
pip install -r requirements

Quick Start

Pretrained Models

Please directly using bash bash/download.sh to pre-process the checkpoints.

Or you can manually download our pre-trained model and put it in ./checkpoints.

Model Description
checkpoints/Encoder_e4e.pth Pre-trained E4E StyleGAN Inversion Encoder.
checkpoints/hfgi.pth Pre-trained HFGI StyleGAN Inversion Encoder.
checkpoints/StyleGAN_e4e.pth Pre-trained StyleGAN.
checkpoints/ffhq_pca.pt StyleGAN editing directions.
checkpoints/ffhq_PCA.npz StyleGAN optimization parameters.
checkpoints/interfacegan_directions/ StyleGAN editing directions.
checkpoints/stylegan2_d_256.pth Pre-trained StyleGAN discriminator.
checkpoints/model_ir_se50.pth Pre-trained id-loss discriminator.
checkpoints/StyleHEAT_visual.pt Pre-trained StyleHEAT model.
checkpoints/BFM 3DMM library. (Note the zip file should be unzipped to BFM/.)
checkpoints/Deep3D/epoch_20.pth Pre-trained 3DMM extractor.

We also provide some example videos along with their corresponding 3dmm parameters in videos.zip. Please unzip and put them in docs/demo/videos/ for later inference.

Inference

  • Same-Identity Reenactment with a video.
python inference.py \
 --config configs/inference.yaml \
 --video_source=./docs/demo/videos/RD_Radio34_003_512.mp4 \
 --output_dir=./docs/demo/output --if_extract
  • Cross-Identity Reenactment with a single image and a video.
python inference.py \
 --config configs/inference.yaml \
 --video_source=./docs/demo/videos/RD_Radio34_003_512.mp4 \
 --image_source=./docs/demo/images/100.jpg \
 --cross_id --if_extract \
 --output_dir=./docs/demo/output

The --video_source and --image_source can be specified as either a single file or a folder.

For a better inversion result but taking more time, please specify --inversion_option=optimize and we will optimize the feature latent of StyleGAN-V2. Otherwise we will use HFGI encoder to get the style code and inversion condition with --inversion_option=encode.

If you need align (crop) images during the inference process, please specify --if_align. Or you can first align the source images following FFHQ dataset.

If you need to extract the 3dmm parameters of the target video during the inference process, please specify --if_extract. Or you can first extract the 3dmm parameters with the script TODO.sh and save the 3dmm in the {video_source}/3dmm/3dmm_{video_name}.npy

If you only need to edit the expression without modifying the pose, please specify --edit_expression_only.

  • Intuitive Editing.
python inference.py \
 --config configs/inference.yaml \
 --image_source=./docs/demo/images/40.jpg \
 --inversion_option=optimize \
 --intuitive_edit \
 --output_dir=./docs/demo/output \
 --if_extract

The 3dmm parameters of the images can also be pre-extracted or online-extracted with the parameter --if_extract.

  • Attribute Editing.
python inference.py \
 --config configs/inference.yaml \
 --video_source=./docs/demo/videos/RD_Radio34_003_512.mp4 \
 --image_source=./docs/demo/images/40.jpg \
 --attribute_edit --attribute=young \
 --cross_id \
 --output_dir=./docs/demo/output

The support editable attributes include young, old, beard, lip. Note to preserve the editing attributes details in W space, the optimized inversion method is banned here.

  • Audio Reenactment.

Please first install SadTalker in the folder of third_part as the format of third_part/SadTalker. Download its pre-trained checkpoints according to their instructions. Install the additional libraries with pip install pydub==0.25.1 yacs==0.1.8 librosa==0.6.0 numba==0.48.0 resampy==0.3.1 imageio-ffmpeg==0.4.7. Then you can run audio reenactment freely.

python inference.py \
 --config configs/inference.yaml \
 --audio_path=./docs/demo/audios/RD_Radio31_000.wav \
 --image_source=./docs/demo/images/100.jpg \
 --cross_id --if_extract \
 --output_dir=./docs/demo/output \
 --inversion_option=optimize

Training

  • Data preprocessing.
  1. To train the VideoWarper, please follow video-preprocessing to download and pre-process the VoxCelebA dataset.

  2. To train the whole framework, please follow HDTF to download the HDTF dataset and see HDTF-preprocessing to pre-process the dataset.

  3. Please follow PIRenderer to extract the 3DMM parameters and prepare all the data into lmdb files.

Training include 2 stages.

  1. Train VideoWarper
bash bash/train_video_warper.sh
  1. Train Video Calibrator
bash bash/train_video_styleheat.sh

Note several path hyper-parameter of dataset need to be modified and then run the script.

🥂 Related Works

Citation

If you find this work useful for your research, please cite:

@article{2203.04036,
      author = {Yin, Fei and Zhang, Yong and Cun, Xiaodong and Cao, Mingdeng and Fan, Yanbo and Wang, Xuan and Bai, Qingyan and Wu, Baoyuan and Wang, Jue and Yang, Yujiu},
      title = {StyleHEAT: One-Shot High-Resolution Editable Talking Face Generation via Pre-trained StyleGAN}, 
      journal = {arxiv:2203.04036},  
      year = {2022}
}

Acknowledgement

Thanks to StyleGAN-2, PIRenderer, HFGI, BaberShop, GFP-GAN, Pixel2Style2Pixel, SadTalker for sharing their code.

About

[ECCV 2022] StyleHEAT: A framework for high-resolution editable talking face generation

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages