This repo is the official code for the CVPR 2023 paper "Relational Context Learning for Human-Object Interaction Detection".
git clone https://github.com/OreoChocolate/MUREN.git
cd MUREN
conda create -f env.yaml
dataset files onedrive link
pretrained weights onedrive link
After downloading the above files, unzip using the command below:
unzip data.zip
unzip pretrained.zip
The downloaded files should be placed as follows:
MUREN
├── data
│ ├── hico_20160224_det
│ └── v-coco
└── pretrained
To train the model on HICO-DET dataset, run the following command:
torchrun --rdzv_id 1234 --rdzv_backend=c10d --nproc_per_node=4 --rdzv_endpoint=localhost:6400 main.py \
--pretrained pretrained/detr-r50-pre-2stage-nq64.pth \
--output_dir PATH/TO/SAVE \
--dataset_file hico --hoi_path data/hico_20160224_det \
--num_obj_classes 80 --num_verb_classes 117 \
--backbone resnet50 --num_queries 64 \
--enc_layers 6 --dec_layers 6 \
--epochs 100 --lr_drop 60 --num_worker 8 --batch_size 4
To train the model on V-COCO dataset, run the following command:
torchrun --rdzv_id 1234 --rdzv_backend=c10d --nproc_per_node=4 --rdzv_endpoint=localhost:6400 main.py \
--pretrained pretrained/detr-r50-pre-2stage-nq100.pth \
--output_dir PATH/TO/SAVE \
--dataset_file vcoco --hoi_path data/v-coco \
--num_obj_classes 81 --num_verb_classes 29 \
--backbone resnet50 --num_queries 100 \
--enc_layers 6 --dec_layers 6 \
--epochs 100 --lr_drop 60 --num_worker 8 --batch_size 4 --freeze
CUDA_VISIBLE_DEVICES=0 python main.py --pretrained "pretrained/hico-best.pth" \
--dataset_file hico --hoi_path data/hico_20160224_det \
--num_obj_classes 80 --num_verb_classes 117 --backbone resnet50 \
--num_queries 64 --dec_layers 6 --num_workers 8 --batch_size 4 --use_nms_filter \
--eval
If you want to evaluate on Known Object (KO) setting, add --ko
flag.
CUDA_VISIBLE_DEVICES=0 python generate_vcoco_official.py \
--param_path "pretrained/vcoco-best.pth" \
--save_path "data/v-coco/vcoco.pickle" \
--hoi_path data/v-coco \
--num_queries 100 --dec_layers 6 --batch_size 1 --backbone resnet50 --use_nms_filter
cd data/v-coco
python vsrl_eval.py "vcoco.pickle"
If you find this code helpful for your research, please cite our paper.
@article{kim2023relational,
title={Relational Context Learning for Human-Object Interaction Detection},
author={Kim, Sanghyun and Jung, Deunsol and Cho, Minsu},
journal={arXiv preprint arXiv:2304.04997},
year={2023}
}
This repo is based on CDN. Thanks for their works.