- Unofficial Tensorflow implementation of Attribute-Controlled Traffic Data Augmentation Using Conditional Generative Models
- University project presentation (PDF). Explains the gist of the paper.
- In collaboration with Federico Vergallo
- Python 3.6
- Tensorflow-gpu 1.14
bash resources/get_train_data.sh (~ 4.7 GB)
bash resources/get_test_data.sh (~1.8 GB)
$ python3 code/train.py
--batch_size 128
--num_classes 2
--lr_g 0.0002
--lr_d 0.005
--model_name None
--truncated False
--rand_seed 42
$ python3 code/test.py
--batch_size 128 -- default the number of images to generate
--num_classes 2
--model_name -- no default, download model and place in 'models/checkpoints'
--truncated False
--rand_seed 42
https://drive.google.com/file/d/1w7DMeCobR-GtRCgphfGIdZUo0Gwx5aDH/view?usp=sharing (~750mb)
- explore time-of-day interpolation
- requirements.txt file
- Original attribute GAN paper AttGAN: Facial Attribute Editing by Only Changing What You Want