Skip to content

Commit

Permalink
Add Transpose function (#91)
Browse files Browse the repository at this point in the history
* Add Transpose function

* csrcs->csrc

* Add transpose unittest

* Add reduce_max_large_dim unittest
  • Loading branch information
joey12300 authored Aug 10, 2022
1 parent bf5affb commit 7fb8dd7
Show file tree
Hide file tree
Showing 9 changed files with 298 additions and 13 deletions.
2 changes: 1 addition & 1 deletion csrc/fastdeploy/core/fd_tensor.cc
Original file line number Diff line number Diff line change
Expand Up @@ -120,7 +120,7 @@ void FDTensor::PrintInfo(const std::string& prefix) {
} else {
FDASSERT(false,
"PrintInfo function doesn't support current situation, maybe you "
"need enhance this function now.")
"need enhance this function now.");
}
std::cout << prefix << ": shape=";
for (int i = 0; i < shape.size(); ++i) {
Expand Down
36 changes: 25 additions & 11 deletions csrc/fastdeploy/function/reduce.cc
Original file line number Diff line number Diff line change
Expand Up @@ -12,11 +12,13 @@
// See the License for the specific language governing permissions and
// limitations under the License.

#include "fastdeploy/function/reduce.h"

#include <set>

#include "fastdeploy/function/eigen.h"
#include "fastdeploy/function/reduce.h"
#include "fastdeploy/function/reduce_functor.h"
#include "fastdeploy/function/transpose.h"
#include "fastdeploy/utils/utils.h"

namespace fastdeploy {
Expand Down Expand Up @@ -71,7 +73,7 @@ void ReduceFunctor(const FDTensor& input, FDTensor* output,
inline void GetShuffledDim(const std::vector<int64_t>& src_dims,
std::vector<int64_t>* dst_dims,
const std::vector<int64_t>& reduced_dims,
std::vector<int>* perm_axis) {
std::vector<int64_t>* perm_axis) {
// check if it's a reduced dim
std::vector<bool> src_dims_check(src_dims.size(), false);
size_t src_size = src_dims.size();
Expand Down Expand Up @@ -104,19 +106,33 @@ template <typename OutT>
void GetShuffledInput(const FDTensor& input, FDTensor* shuffled_input,
const std::vector<int64_t>& dims) {
auto shuffled_dims = input.shape;
std::vector<int> perm_axis(input.shape.size());
std::vector<int64_t> perm_axis(input.shape.size());
GetShuffledDim(input.shape, &shuffled_dims, dims, &perm_axis);

shuffled_input->Allocate(shuffled_dims, input.dtype);
// TODO(zhoushunjie) : Need to implement trans function
// phi::funcs::TransposeNormal<DeviceContext, OutT> trans;
// trans(dev_ctx, input, shuffled_input, perm_axis);
Transpose(input, shuffled_input, perm_axis);
}

//////////////// HandleLargeDim
template <typename OutT, typename Functor>
void HandleLargeDim(const FDTensor& input, FDTensor* output,
const std::vector<int64_t>& dims, bool keep_dim) {
auto out_dims = input.shape;
std::vector<int64_t> dims_ref = dims;
auto x_rank = input.shape.size();
for (size_t i = 0; i < dims_ref.size(); ++i) {
if (dims_ref[i] < 0) dims_ref[i] = x_rank + dims_ref[i];
out_dims[dims_ref[i]] = 1;
}
if (!keep_dim) {
const int kDelFlag = -2;
for (size_t i = 0; i < dims_ref.size(); ++i) {
out_dims[dims_ref[i]] = kDelFlag;
}
out_dims.erase(remove(out_dims.begin(), out_dims.end(), kDelFlag),
out_dims.end());
}
output->Allocate(out_dims, TypeToDataType<OutT>::dtype);
// shuffle the reduced dim to the end
FDTensor shuffled_input;
GetShuffledInput<OutT>(input, &shuffled_input, dims);
Expand All @@ -126,11 +142,9 @@ void HandleLargeDim(const FDTensor& input, FDTensor* output,
const int64_t reduced = shuffled_input.Numel() / unreduced;
shuffled_input.Allocate({unreduced, reduced}, TypeToDataType<OutT>::dtype);

auto output_dim = output->shape;
output->Allocate({unreduced}, TypeToDataType<OutT>::dtype);

output->shape = {unreduced};
ReduceFunctor<OutT, 2, 1, Functor>(shuffled_input, output, {1}, keep_dim);
output->shape = output_dim;
output->shape = out_dims;
}

////////////// ReduceKernel
Expand All @@ -152,7 +166,7 @@ void ReduceKernelImpl(const FDTensor& input, FDTensor* output,
} else {
int ndim = input.shape.size();
int rdim = dims.size();
if (ndim > 3) {
if (ndim > 4) {
HandleLargeDim<OutT, Functor>(input, output, dims, keep_dim);
} else {
HANDLE_REDUCE_DIM(4, 3);
Expand Down
115 changes: 115 additions & 0 deletions csrc/fastdeploy/function/transpose.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,115 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "fastdeploy/function/transpose.h"
#include "fastdeploy/function/eigen.h"
#include "fastdeploy/utils/utils.h"

namespace fastdeploy {
#ifdef ENABLE_FDTENSOR_FUNC

template <typename T>
struct TransposeNormalKernel {
void operator()(const FDTensor& in, FDTensor* out,
const std::vector<int64_t>& axis) {
const int rank = axis.size();
auto in_stride = GetStride(in.shape);
auto out_stride = GetStride(out->shape);
const T* in_ptr = reinterpret_cast<const T*>(in.Data());
T* out_ptr = reinterpret_cast<T*>(out->Data());

auto transpose_helper = [&](int64_t beg, int64_t end) {
for (int64_t out_idx = beg; out_idx < end; ++out_idx) {
int64_t in_idx = 0;
int64_t tmp_idx = out_idx;
// calculate the input index
for (int i = 0; i < rank; ++i) {
const int64_t coordinate = tmp_idx / out_stride[i];
tmp_idx -= coordinate * out_stride[i];
in_idx += coordinate * in_stride[axis[i]];
}
out_ptr[out_idx] = in_ptr[in_idx];
}
};
transpose_helper(0, out->Numel());
}
};

template <typename T, int Rank>
struct TransposeKernelImpl {
void operator()(const FDTensor& in, FDTensor* out,
const std::vector<int64_t>& axis) {
Eigen::array<int, Rank> permute;
for (int i = 0; i < Rank; i++) {
permute[i] = axis[i];
}

auto& place = *EigenDeviceWrapper::GetInstance()->GetDevice();
auto eigen_in = EigenTensor<T, Rank>::From(in);
auto eigen_out = EigenTensor<T, Rank>::From(*out);
eigen_out.device(place) = eigen_in.shuffle(permute);
}
};

template <typename T>
void TransposeKernel(const FDTensor& x, FDTensor* out,
const std::vector<int64_t>& axis) {
int rank = axis.size();
switch (rank) {
case 1:
TransposeKernelImpl<T, 1> trans1;
trans1(x, out, axis);
break;
case 2:
TransposeKernelImpl<T, 2> trans2;
trans2(x, out, axis);
break;
case 3:
TransposeKernelImpl<T, 3> trans3;
trans3(x, out, axis);
break;
case 4:
TransposeKernelImpl<T, 4> trans4;
trans4(x, out, axis);
break;
default:
// for rank >= 4 situation
TransposeNormalKernel<T> trans_normal;
trans_normal(x, out, axis);
}
}

void Transpose(const FDTensor& x, FDTensor* out,
const std::vector<int64_t>& dims) {
size_t dims_size = dims.size();
FDASSERT(dims_size == x.shape.size(),
"The input tensor's dimension should be equal to the dims's size.");
std::vector<int> count(dims_size, 0);
for (size_t i = 0; i < dims_size; i++) {
FDASSERT(dims[i] >= 0, "The dims should be greater than or equal to 0.");
FDASSERT(dims[i] < static_cast<int>(dims_size) && ++count[dims[i]] == 1,
"Each element of Attribute axis should be a unique value range "
"from 0 to (dims - 1), where the dims is the axis's size, unique "
"value means this axis value can appear only once. ");
}
std::vector<int64_t> out_dims(dims_size);
for (size_t i = 0; i < dims_size; i++) {
out_dims[i] = x.shape[dims[i]];
}
out->Allocate(out_dims, x.dtype);
FD_VISIT_ALL_TYPES(x.dtype, "TransposeKernel",
([&] { TransposeKernel<data_t>(x, out, dims); }));
}
#endif
} // namespace fastdeploy
29 changes: 29 additions & 0 deletions csrc/fastdeploy/function/transpose.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "fastdeploy/core/fd_tensor.h"

namespace fastdeploy {
#ifdef ENABLE_FDTENSOR_FUNC
/** Excute the transpose operation for input FDTensor along given dims.
@param x The input tensor.
@param out The output tensor which stores the result.
@param dims The vector of axis which the input tensor will transpose.
*/
FASTDEPLOY_DECL void Transpose(const FDTensor& x, FDTensor* out,
const std::vector<int64_t>& dims);
#endif
} // namespace fastdeploy
9 changes: 9 additions & 0 deletions csrc/fastdeploy/utils/utils.cc
Original file line number Diff line number Diff line change
Expand Up @@ -46,4 +46,13 @@ bool ReadBinaryFromFile(const std::string& file, std::string* contents) {
return true;
}

std::vector<int64_t> GetStride(const std::vector<int64_t>& dims) {
auto dims_size = dims.size();
std::vector<int64_t> result(dims_size, 1);
for (int i = dims_size - 2; i >= 0; --i) {
result[i] = result[i + 1] * dims[i + 1];
}
return result;
}

} // namespace fastdeploy
4 changes: 4 additions & 0 deletions csrc/fastdeploy/utils/utils.h
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@
#include <iostream>
#include <sstream>
#include <string>
#include <vector>

#if defined(_WIN32)
#ifdef FASTDEPLOY_LIB
Expand Down Expand Up @@ -147,4 +148,7 @@ FASTDEPLOY_DECL bool ReadBinaryFromFile(const std::string& file,
} \
}()

FASTDEPLOY_DECL std::vector<int64_t> GetStride(
const std::vector<int64_t>& dims);

} // namespace fastdeploy
33 changes: 32 additions & 1 deletion docs/api/function.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# FDTensor C++ 张量化函数

FDTensor是FastDeploy在C++层表示张量的结构体。该结构体主要用于管理推理部署时模型的输入输出数据,支持在不同的Runtime后端中使用。在基于C++的推理部署应用开发过程中,我们往往需要对输入输出的数据进行一些数据处理,用以得到模型的实际输入或者应用的实际输出。这种数据预处理的逻辑可以使用原生的C++标准库来实现,但开发难度会比较大,如对3维Tensor的第2维求最大值。针对这个问题,FastDeploy基于FDTensor开发了一套C++张量化函数,用于降低FastDeploy用户的开发成本,提高开发效率。目前主要分为两类函数:Reduce类函数和Elementwise类函数
FDTensor是FastDeploy在C++层表示张量的结构体。该结构体主要用于管理推理部署时模型的输入输出数据,支持在不同的Runtime后端中使用。在基于C++的推理部署应用开发过程中,我们往往需要对输入输出的数据进行一些数据处理,用以得到模型的实际输入或者应用的实际输出。这种数据预处理的逻辑可以使用原生的C++标准库来实现,但开发难度会比较大,如对3维Tensor的第2维求最大值。针对这个问题,FastDeploy基于FDTensor开发了一套C++张量化函数,用于降低FastDeploy用户的开发成本,提高开发效率。目前主要分为三类函数:Reduce类函数,Manipulate类函数,Elementwise类函数

## Reduce类函数

Expand Down Expand Up @@ -209,6 +209,37 @@ input.SetExternalData({2, 3}, FDDataType::INT32, bool_inputs.data());
All(input, &output, {0}, /* keep_dim = */true);
```

## Manipulate类函数

目前FastDeploy支持1种Manipulate类函数:Transpose。

### Transpose

#### 函数签名

```c++
/** Excute the transpose operation for input FDTensor along given dims.
@param x The input tensor.
@param out The output tensor which stores the result.
@param dims The vector of axis which the input tensor will transpose.
*/
void Transpose(const FDTensor& x, FDTensor* out,
const std::vector<int64_t>& dims);
```
#### 使用示例
```c++
FDTensor input, output;
std::vector<float> inputs = {2, 4, 3, 7, 1, 5};
input.SetExternalData({2, 3}, FDDataType::FP32, inputs.data());
// Transpose the input tensor with axis {1, 0}.
// The output result would be [[2, 7], [4, 1], [3, 5]]
Transpose(input, &output, {1, 0});
```


## Elementwise类函数

正在开发中,敬请关注······
22 changes: 22 additions & 0 deletions tests/test_reduce.cc
Original file line number Diff line number Diff line change
Expand Up @@ -59,6 +59,28 @@ TEST(fastdeploy, reduce_max) {
expected_result_noaxis.data(), expected_result_noaxis.size());
}

TEST(fastdeploy, reduce_max_large_dim) {
FDTensor input, output;
CheckShape check_shape;
CheckData check_data;

std::vector<int> inputs = {2, 4, 3, 7, 1, 5, 6, 9};
std::vector<int> expected_result_axis0 = {4, 7, 5, 9};
input.SetExternalData({2, 1, 2, 1, 2}, FDDataType::INT32, inputs.data());

// keep_dim = true, reduce_all = false
Max(input, &output, {4}, true);
check_shape(output.shape, {2, 1, 2, 1, 1});
check_data(reinterpret_cast<const int*>(output.Data()),
expected_result_axis0.data(), expected_result_axis0.size());

// keep_dim = false, reduce_all = false
Max(input, &output, {4});
check_shape(output.shape, {2, 1, 2, 1});
check_data(reinterpret_cast<const int*>(output.Data()),
expected_result_axis0.data(), expected_result_axis0.size());
}

TEST(fastdeploy, reduce_min) {
FDTensor input, output;
CheckShape check_shape;
Expand Down
Loading

0 comments on commit 7fb8dd7

Please sign in to comment.