Releases: PaddlePaddle/PARL
Releases · PaddlePaddle/PARL
PARL 2.2
PARL 2.1
Framework
- add agent.train()/eval()
- fix some bugs of DDQN
- add ComptWrapper (Cpmpatible for different versions of gym and latest verion of mujoco)
Parallel Training - support xparl in notebook
- add XPARL_PYTHON environment variable
Example
- add Paddle examples
- PPO
- MADDPG
- ES
- CQL
- IMPALA
- Baseline
- GridDispatching Competition
- Halite Competition
- add PPO、MADDPG、ES、CQL、IQL、Decision Transformer、MAPPO、MAML++ in benchmark
Tutorial
- add dygraph+parl2.0+paddle2.0 version of tutorials code for bilibili course
- add dependency version constraints to tutorials
PARL 2.0.0
Framework
- Support PaddlePaddle 2.0 (dynamic graph mode) by default
- Add integration testing for Windows
Parallel Training
- Refactor the heartbeat mechanism of the xparl module
- Use the synchronous xparl API for some distributed algorithms
Documentation
- Add Chinese documentation @readthedocs
Example
- Paddle
- Policy Gradient
- DDPG
- DQN/Double DQN/ Dueling DQN
- SAC
- TD3
- OAC
- QMIX
- A2C
- AlphaZero
- Fluid
- QMIX
Application
- Self-driving system in CARLA simulator
PARL 1.4
Framework
- support the latest API of dynamic graph mode in PaddlePaddle
- support VisuaIDL visualization tool
- optimize compatibility under different systems
Parallel Training
- add monitoring page of the task output log
- support direct access and modification of attributes of remote objects
- support asynchronous function call in remote objects
Example
- add Prioritized DQN algorithm
- add AlphaZero solution for Kaggle Connect X competition
- add the champion models of both tracks of Neurips 2020 Learning-to-Run-a-Power-Network challenge
- add demonstration code of open class "World champion takes you to learn reinforcement learning from scratch"
PARL 1.3
New Features
- Add the first open-source industrial evolution strategy framework EvoKit
- Support Multi-Agent RL algorithms, including MADDPG
- Support multiple GPU training, provide a demonstration of DQN with multi GPU
- Add SOTA algorithms of continuous control problems, TD3 and SAC
- Add the champion model and training method of NeurIPS 2019 reinforcement learning competition
- Compatible with Windows
PARL 1.2
Parallel Training
- Using a cluster to maintain the computation resource for parallel training.
- Web UI for monitoring the cluster.
- Support limiting the memory usage for each remote class.
- Tutorial for the use of the cluster.
Example
- Add the evolution strategies(ES) algorithm, using the PARL parallel module.
- Append the A2C performance on a range of Atari games.
- Append the IMPALA performance on a range of Atari games.
Tutorial
- Add the official documentation deployed at the readthedocs.
- Add a tutorial describing how to build a custom algorithm.
- Add a tutorial describing how to use the cluster for parallel computation.
PARL 1.1.1
Frameworks
- Support tensorboard tool.
- Add
save
andrestore
APIs inparl.Agent
. - Add exception traceback in remote module.
- Disentangle basic classes(e,g., parl.Model) and the computation framework.
Examples
- Refine benchmark performance of A2C example.
- Simplify QuickStart example.
Papers
- Collect some papers relative to model-based reinforcemnt learning topic.
PARL 1.1
Documentation
- Add Chinese version of README in homepage.
Framework
- Support for distributed training. Add parallelization module
parl.remote
. - Functional APIs to dump and load parameters in numpy arrays. Add
get_params
andset_params
to support getting parameters fromparl.Model
,parl.Algorithm
andparl.Agent
. - Add IMPALA and A3C algorithms to
parl.algorithms
.
Examples
- IMPALA
- A2C
- GA3C
PARL 1.0
Framework
- Support
Model
,Algorithm
andAgent
abstractions. - Support wrappers for fluid.layers, which can easily share parameters between layers.
- Support
sync_params_to
API inModel
to synchronize parameters between model and target model directly.
Examples
- QuickStart
- DQN
- DDPG
- PPO
- Winning solution of NeurIPS2018-AI-for-Prosthetics-Challenge