-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[CINN] fix bug in broadcast_with_cf.cc (#63320)
- Loading branch information
Baizhou Zhang
authored
Apr 10, 2024
1 parent
fec0d46
commit 0878a9b
Showing
2 changed files
with
135 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,132 @@ | ||
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
|
||
import os | ||
import unittest | ||
|
||
import numpy | ||
|
||
os.environ['FLAGS_cinn_new_group_scheduler'] = '1' | ||
os.environ['FLAGS_group_schedule_tiling_first'] = '1' | ||
os.environ['FLAGS_prim_all'] = 'true' | ||
os.environ['FLAGS_prim_enable_dynamic'] = 'true' | ||
os.environ['FLAGS_print_ir'] = '1' | ||
os.environ['FLAGS_enable_pir_api'] = '1' | ||
os.environ['FLAGS_use_cinn'] = '1' | ||
os.environ['FLAGS_cinn_bucket_compile'] = '1' | ||
os.environ['FLAGS_cinn_new_cluster_op_method'] = '1' | ||
os.environ['FLAGS_deny_cinn_ops'] = 'slice;' | ||
|
||
import paddle | ||
|
||
build_strategy = paddle.static.BuildStrategy() | ||
build_strategy.build_cinn_pass = True | ||
|
||
|
||
def generate_input_spec(rank_dtype_list): | ||
input_spec = [] | ||
for rank, dtype in rank_dtype_list: | ||
input_spec.append( | ||
paddle.static.InputSpec(shape=[None] * rank, dtype=dtype) | ||
) | ||
return input_spec | ||
|
||
|
||
class TestTrivialFusion(unittest.TestCase): | ||
def setUp(self): | ||
pass | ||
|
||
def tearDown(self): | ||
pass | ||
|
||
def compare_result(self, dy_compute, input_spec, data_init): | ||
inputs = data_init() | ||
dy_out = dy_compute(*inputs) | ||
static_compute = paddle.jit.to_static( | ||
full_graph=True, | ||
build_strategy=build_strategy, | ||
input_spec=input_spec, | ||
)(dy_compute) | ||
st_out = static_compute(*inputs) | ||
numpy.testing.assert_allclose(dy_out, st_out, atol=1e-5, rtol=1e-6) | ||
|
||
def test_simple_trivial_fusions(self): | ||
def func(x): | ||
x = x * 2 | ||
x = x + 1 | ||
x = paddle.nn.functional.relu(x) | ||
x = paddle.transpose(x, perm=[0, 2, 1]) | ||
x = x.reshape((-1, 128)) | ||
return x | ||
|
||
def init(): | ||
x = paddle.rand((32, 32, 128)) | ||
return (x,) | ||
|
||
input_spec = generate_input_spec([(3, 'float32')]) | ||
self.compare_result(func, input_spec, init) | ||
|
||
def test_trivial_fusion_slice_and_concat(self): | ||
def func(x, y): | ||
x = x * 2 | ||
y = y * 2 | ||
x = x[:, :, :64] | ||
y = y[:, :, :64] | ||
z = paddle.concat([x, y], axis=-1) | ||
return z | ||
|
||
def init(): | ||
x = paddle.rand((32, 32, 128)) | ||
y = paddle.rand((32, 32, 128)) | ||
return (x, y) | ||
|
||
input_spec = generate_input_spec([(3, 'float32'), (3, 'float32')]) | ||
self.compare_result(func, input_spec, init) | ||
|
||
def test_trivial_fusion_gather_nd(self): | ||
def func(x, y): | ||
x = x * 2 | ||
output = paddle.gather_nd(x, y) | ||
return output | ||
|
||
def init(): | ||
x = paddle.to_tensor( | ||
[[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]] | ||
) | ||
index = paddle.to_tensor([[0, 1]]) | ||
return (x, index) | ||
|
||
input_spec = [ | ||
paddle.static.InputSpec(shape=[None, None, None], dtype='float32'), | ||
paddle.static.InputSpec(shape=[None, 2], dtype='int32'), | ||
] | ||
self.compare_result(func, input_spec, init) | ||
|
||
def test_broadcast(self): | ||
def func(x, y): | ||
output = x + y | ||
return output | ||
|
||
def init(): | ||
x = paddle.rand((32, 1)) | ||
y = paddle.rand((1, 32)) | ||
return (x, y) | ||
|
||
input_spec = generate_input_spec([(2, 'float32'), (2, 'float32')]) | ||
self.compare_result(func, input_spec, init) | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |