Skip to content

Commit

Permalink
Add mnist test for post training quantization, test=develop (#26436)
Browse files Browse the repository at this point in the history
* Add mnist test for post training quantization, test=develop
  • Loading branch information
juncaipeng authored Aug 24, 2020
1 parent 79539cf commit 0d71cff
Show file tree
Hide file tree
Showing 2 changed files with 227 additions and 0 deletions.
1 change: 1 addition & 0 deletions python/paddle/fluid/contrib/slim/tests/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -123,6 +123,7 @@ endfunction()

if(WIN32)
list(REMOVE_ITEM TEST_OPS test_light_nas)
list(REMOVE_ITEM TEST_OPS test_post_training_quantization_mnist)
list(REMOVE_ITEM TEST_OPS test_post_training_quantization_mobilenetv1)
list(REMOVE_ITEM TEST_OPS test_post_training_quantization_resnet50)
list(REMOVE_ITEM TEST_OPS test_weight_quantization_mobilenetv1)
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,226 @@
# copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
# http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
import unittest
import os
import time
import sys
import random
import math
import functools
import contextlib
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.dataset.common import download
from paddle.fluid.contrib.slim.quantization import PostTrainingQuantization

random.seed(0)
np.random.seed(0)


class TestPostTrainingQuantization(unittest.TestCase):
def setUp(self):
self.download_path = 'int8/download'
self.cache_folder = os.path.expanduser('~/.cache/paddle/dataset/' +
self.download_path)
self.timestamp = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime())
self.int8_model_path = os.path.join(os.getcwd(),
"post_training_" + self.timestamp)
try:
os.system("mkdir -p " + self.int8_model_path)
except Exception as e:
print("Failed to create {} due to {}".format(self.int8_model_path,
str(e)))
sys.exit(-1)

def tearDown(self):
try:
os.system("rm -rf {}".format(self.int8_model_path))
except Exception as e:
print("Failed to delete {} due to {}".format(self.int8_model_path,
str(e)))

def cache_unzipping(self, target_folder, zip_path):
if not os.path.exists(target_folder):
cmd = 'mkdir {0} && tar xf {1} -C {0}'.format(target_folder,
zip_path)
os.system(cmd)

def download_model(self, data_url, data_md5, folder_name):
download(data_url, self.download_path, data_md5)
file_name = data_url.split('/')[-1]
zip_path = os.path.join(self.cache_folder, file_name)
print('Data is downloaded at {0}'.format(zip_path))

data_cache_folder = os.path.join(self.cache_folder, folder_name)
self.cache_unzipping(data_cache_folder, zip_path)
return data_cache_folder

def run_program(self, model_path, batch_size, infer_iterations):
print("test model path:" + model_path)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
[infer_program, feed_dict, fetch_targets] = \
fluid.io.load_inference_model(model_path, exe)
val_reader = paddle.batch(paddle.dataset.mnist.test(), batch_size)

img_shape = [1, 28, 28]
test_info = []
cnt = 0
periods = []
for batch_id, data in enumerate(val_reader()):
image = np.array(
[x[0].reshape(img_shape) for x in data]).astype("float32")
input_label = np.array([x[1] for x in data]).astype("int64")

t1 = time.time()
out = exe.run(infer_program,
feed={feed_dict[0]: image},
fetch_list=fetch_targets)
t2 = time.time()
period = t2 - t1
periods.append(period)

out_label = np.argmax(np.array(out[0]), axis=1)
top1_num = sum(input_label == out_label)
test_info.append(top1_num)
cnt += len(data)

if (batch_id + 1) == infer_iterations:
break

throughput = cnt / np.sum(periods)
latency = np.average(periods)
acc1 = np.sum(test_info) / cnt
return (throughput, latency, acc1)

def generate_quantized_model(self,
model_path,
algo="KL",
quantizable_op_type=["conv2d"],
is_full_quantize=False,
is_use_cache_file=False,
is_optimize_model=False,
batch_size=10,
batch_nums=10):

place = fluid.CPUPlace()
exe = fluid.Executor(place)
scope = fluid.global_scope()
val_reader = paddle.dataset.mnist.train()

ptq = PostTrainingQuantization(
executor=exe,
model_dir=model_path,
sample_generator=val_reader,
batch_size=batch_size,
batch_nums=batch_nums,
algo=algo,
quantizable_op_type=quantizable_op_type,
is_full_quantize=is_full_quantize,
optimize_model=is_optimize_model,
is_use_cache_file=is_use_cache_file)
ptq.quantize()
ptq.save_quantized_model(self.int8_model_path)

def run_test(self,
model_name,
data_url,
data_md5,
algo,
quantizable_op_type,
is_full_quantize,
is_use_cache_file,
is_optimize_model,
diff_threshold,
batch_size=10,
infer_iterations=10,
quant_iterations=5):

origin_model_path = self.download_model(data_url, data_md5, model_name)
origin_model_path = os.path.join(origin_model_path, model_name)

print("Start FP32 inference for {0} on {1} images ...".format(
model_name, infer_iterations * batch_size))
(fp32_throughput, fp32_latency, fp32_acc1) = self.run_program(
origin_model_path, batch_size, infer_iterations)

print("Start INT8 post training quantization for {0} on {1} images ...".
format(model_name, quant_iterations * batch_size))
self.generate_quantized_model(
origin_model_path, algo, quantizable_op_type, is_full_quantize,
is_use_cache_file, is_optimize_model, batch_size, quant_iterations)

print("Start INT8 inference for {0} on {1} images ...".format(
model_name, infer_iterations * batch_size))
(int8_throughput, int8_latency, int8_acc1) = self.run_program(
self.int8_model_path, batch_size, infer_iterations)

print("---Post training quantization of {} method---".format(algo))
print(
"FP32 {0}: batch_size {1}, throughput {2} img/s, latency {3} s, acc1 {4}.".
format(model_name, batch_size, fp32_throughput, fp32_latency,
fp32_acc1))
print(
"INT8 {0}: batch_size {1}, throughput {2} img/s, latency {3} s, acc1 {4}.\n".
format(model_name, batch_size, int8_throughput, int8_latency,
int8_acc1))
sys.stdout.flush()

delta_value = fp32_acc1 - int8_acc1
self.assertLess(delta_value, diff_threshold)


class TestPostTrainingKLForMnist(TestPostTrainingQuantization):
def test_post_training_kl(self):
model_name = "mnist_model"
data_url = "http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5 = "be71d3997ec35ac2a65ae8a145e2887c"
algo = "KL"
quantizable_op_type = ["conv2d", "depthwise_conv2d", "mul"]
is_full_quantize = False
is_use_cache_file = False
is_optimize_model = True
diff_threshold = 0.01
batch_size = 10
infer_iterations = 50
quant_iterations = 5
self.run_test(model_name, data_url, data_md5, algo, quantizable_op_type,
is_full_quantize, is_use_cache_file, is_optimize_model,
diff_threshold, batch_size, infer_iterations,
quant_iterations)


class TestPostTrainingAbsMaxForMnist(TestPostTrainingQuantization):
def test_post_training_abs_max(self):
model_name = "mnist_model"
data_url = "http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5 = "be71d3997ec35ac2a65ae8a145e2887c"
algo = "abs_max"
quantizable_op_type = ["conv2d", "mul"]
is_full_quantize = True
is_use_cache_file = False
is_optimize_model = True
diff_threshold = 0.01
batch_size = 10
infer_iterations = 50
quant_iterations = 10
self.run_test(model_name, data_url, data_md5, algo, quantizable_op_type,
is_full_quantize, is_use_cache_file, is_optimize_model,
diff_threshold, batch_size, infer_iterations,
quant_iterations)


if __name__ == '__main__':
unittest.main()

0 comments on commit 0d71cff

Please sign in to comment.