-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add mnist test for post training quantization, test=develop (#26436)
* Add mnist test for post training quantization, test=develop
- Loading branch information
1 parent
79539cf
commit 0d71cff
Showing
2 changed files
with
227 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
226 changes: 226 additions & 0 deletions
226
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mnist.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,226 @@ | ||
# copyright (c) 2018 paddlepaddle authors. all rights reserved. | ||
# | ||
# licensed under the apache license, version 2.0 (the "license"); | ||
# you may not use this file except in compliance with the license. | ||
# you may obtain a copy of the license at | ||
# | ||
# http://www.apache.org/licenses/license-2.0 | ||
# | ||
# unless required by applicable law or agreed to in writing, software | ||
# distributed under the license is distributed on an "as is" basis, | ||
# without warranties or conditions of any kind, either express or implied. | ||
# see the license for the specific language governing permissions and | ||
# limitations under the license. | ||
import unittest | ||
import os | ||
import time | ||
import sys | ||
import random | ||
import math | ||
import functools | ||
import contextlib | ||
import numpy as np | ||
import paddle | ||
import paddle.fluid as fluid | ||
from paddle.dataset.common import download | ||
from paddle.fluid.contrib.slim.quantization import PostTrainingQuantization | ||
|
||
random.seed(0) | ||
np.random.seed(0) | ||
|
||
|
||
class TestPostTrainingQuantization(unittest.TestCase): | ||
def setUp(self): | ||
self.download_path = 'int8/download' | ||
self.cache_folder = os.path.expanduser('~/.cache/paddle/dataset/' + | ||
self.download_path) | ||
self.timestamp = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime()) | ||
self.int8_model_path = os.path.join(os.getcwd(), | ||
"post_training_" + self.timestamp) | ||
try: | ||
os.system("mkdir -p " + self.int8_model_path) | ||
except Exception as e: | ||
print("Failed to create {} due to {}".format(self.int8_model_path, | ||
str(e))) | ||
sys.exit(-1) | ||
|
||
def tearDown(self): | ||
try: | ||
os.system("rm -rf {}".format(self.int8_model_path)) | ||
except Exception as e: | ||
print("Failed to delete {} due to {}".format(self.int8_model_path, | ||
str(e))) | ||
|
||
def cache_unzipping(self, target_folder, zip_path): | ||
if not os.path.exists(target_folder): | ||
cmd = 'mkdir {0} && tar xf {1} -C {0}'.format(target_folder, | ||
zip_path) | ||
os.system(cmd) | ||
|
||
def download_model(self, data_url, data_md5, folder_name): | ||
download(data_url, self.download_path, data_md5) | ||
file_name = data_url.split('/')[-1] | ||
zip_path = os.path.join(self.cache_folder, file_name) | ||
print('Data is downloaded at {0}'.format(zip_path)) | ||
|
||
data_cache_folder = os.path.join(self.cache_folder, folder_name) | ||
self.cache_unzipping(data_cache_folder, zip_path) | ||
return data_cache_folder | ||
|
||
def run_program(self, model_path, batch_size, infer_iterations): | ||
print("test model path:" + model_path) | ||
place = fluid.CPUPlace() | ||
exe = fluid.Executor(place) | ||
[infer_program, feed_dict, fetch_targets] = \ | ||
fluid.io.load_inference_model(model_path, exe) | ||
val_reader = paddle.batch(paddle.dataset.mnist.test(), batch_size) | ||
|
||
img_shape = [1, 28, 28] | ||
test_info = [] | ||
cnt = 0 | ||
periods = [] | ||
for batch_id, data in enumerate(val_reader()): | ||
image = np.array( | ||
[x[0].reshape(img_shape) for x in data]).astype("float32") | ||
input_label = np.array([x[1] for x in data]).astype("int64") | ||
|
||
t1 = time.time() | ||
out = exe.run(infer_program, | ||
feed={feed_dict[0]: image}, | ||
fetch_list=fetch_targets) | ||
t2 = time.time() | ||
period = t2 - t1 | ||
periods.append(period) | ||
|
||
out_label = np.argmax(np.array(out[0]), axis=1) | ||
top1_num = sum(input_label == out_label) | ||
test_info.append(top1_num) | ||
cnt += len(data) | ||
|
||
if (batch_id + 1) == infer_iterations: | ||
break | ||
|
||
throughput = cnt / np.sum(periods) | ||
latency = np.average(periods) | ||
acc1 = np.sum(test_info) / cnt | ||
return (throughput, latency, acc1) | ||
|
||
def generate_quantized_model(self, | ||
model_path, | ||
algo="KL", | ||
quantizable_op_type=["conv2d"], | ||
is_full_quantize=False, | ||
is_use_cache_file=False, | ||
is_optimize_model=False, | ||
batch_size=10, | ||
batch_nums=10): | ||
|
||
place = fluid.CPUPlace() | ||
exe = fluid.Executor(place) | ||
scope = fluid.global_scope() | ||
val_reader = paddle.dataset.mnist.train() | ||
|
||
ptq = PostTrainingQuantization( | ||
executor=exe, | ||
model_dir=model_path, | ||
sample_generator=val_reader, | ||
batch_size=batch_size, | ||
batch_nums=batch_nums, | ||
algo=algo, | ||
quantizable_op_type=quantizable_op_type, | ||
is_full_quantize=is_full_quantize, | ||
optimize_model=is_optimize_model, | ||
is_use_cache_file=is_use_cache_file) | ||
ptq.quantize() | ||
ptq.save_quantized_model(self.int8_model_path) | ||
|
||
def run_test(self, | ||
model_name, | ||
data_url, | ||
data_md5, | ||
algo, | ||
quantizable_op_type, | ||
is_full_quantize, | ||
is_use_cache_file, | ||
is_optimize_model, | ||
diff_threshold, | ||
batch_size=10, | ||
infer_iterations=10, | ||
quant_iterations=5): | ||
|
||
origin_model_path = self.download_model(data_url, data_md5, model_name) | ||
origin_model_path = os.path.join(origin_model_path, model_name) | ||
|
||
print("Start FP32 inference for {0} on {1} images ...".format( | ||
model_name, infer_iterations * batch_size)) | ||
(fp32_throughput, fp32_latency, fp32_acc1) = self.run_program( | ||
origin_model_path, batch_size, infer_iterations) | ||
|
||
print("Start INT8 post training quantization for {0} on {1} images ...". | ||
format(model_name, quant_iterations * batch_size)) | ||
self.generate_quantized_model( | ||
origin_model_path, algo, quantizable_op_type, is_full_quantize, | ||
is_use_cache_file, is_optimize_model, batch_size, quant_iterations) | ||
|
||
print("Start INT8 inference for {0} on {1} images ...".format( | ||
model_name, infer_iterations * batch_size)) | ||
(int8_throughput, int8_latency, int8_acc1) = self.run_program( | ||
self.int8_model_path, batch_size, infer_iterations) | ||
|
||
print("---Post training quantization of {} method---".format(algo)) | ||
print( | ||
"FP32 {0}: batch_size {1}, throughput {2} img/s, latency {3} s, acc1 {4}.". | ||
format(model_name, batch_size, fp32_throughput, fp32_latency, | ||
fp32_acc1)) | ||
print( | ||
"INT8 {0}: batch_size {1}, throughput {2} img/s, latency {3} s, acc1 {4}.\n". | ||
format(model_name, batch_size, int8_throughput, int8_latency, | ||
int8_acc1)) | ||
sys.stdout.flush() | ||
|
||
delta_value = fp32_acc1 - int8_acc1 | ||
self.assertLess(delta_value, diff_threshold) | ||
|
||
|
||
class TestPostTrainingKLForMnist(TestPostTrainingQuantization): | ||
def test_post_training_kl(self): | ||
model_name = "mnist_model" | ||
data_url = "http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz" | ||
data_md5 = "be71d3997ec35ac2a65ae8a145e2887c" | ||
algo = "KL" | ||
quantizable_op_type = ["conv2d", "depthwise_conv2d", "mul"] | ||
is_full_quantize = False | ||
is_use_cache_file = False | ||
is_optimize_model = True | ||
diff_threshold = 0.01 | ||
batch_size = 10 | ||
infer_iterations = 50 | ||
quant_iterations = 5 | ||
self.run_test(model_name, data_url, data_md5, algo, quantizable_op_type, | ||
is_full_quantize, is_use_cache_file, is_optimize_model, | ||
diff_threshold, batch_size, infer_iterations, | ||
quant_iterations) | ||
|
||
|
||
class TestPostTrainingAbsMaxForMnist(TestPostTrainingQuantization): | ||
def test_post_training_abs_max(self): | ||
model_name = "mnist_model" | ||
data_url = "http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz" | ||
data_md5 = "be71d3997ec35ac2a65ae8a145e2887c" | ||
algo = "abs_max" | ||
quantizable_op_type = ["conv2d", "mul"] | ||
is_full_quantize = True | ||
is_use_cache_file = False | ||
is_optimize_model = True | ||
diff_threshold = 0.01 | ||
batch_size = 10 | ||
infer_iterations = 50 | ||
quant_iterations = 10 | ||
self.run_test(model_name, data_url, data_md5, algo, quantizable_op_type, | ||
is_full_quantize, is_use_cache_file, is_optimize_model, | ||
diff_threshold, batch_size, infer_iterations, | ||
quant_iterations) | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |