Skip to content

Commit

Permalink
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
Browse files Browse the repository at this point in the history
… fix-sgd
  • Loading branch information
jacquesqiao committed Aug 18, 2017
2 parents 8b3d33a + 428ce90 commit 230e613
Show file tree
Hide file tree
Showing 24 changed files with 271 additions and 142 deletions.
4 changes: 2 additions & 2 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -137,9 +137,9 @@ set(EXTERNAL_LIBS
)

if(WITH_GPU)
list(APPEND EXTERNAL_LIB ${CUDA_LIBRARIES} ${CUDA_rt_LIBRARY})
list(APPEND EXTERNAL_LIBS ${CUDA_LIBRARIES} ${CUDA_rt_LIBRARY})
if(NOT WITH_DSO)
list(APPEND EXTERNAL_LIB ${CUDNN_LIBRARY} ${CUDA_CUBLAS_LIBRARIES} ${CUDA_curand_LIBRARY})
list(APPEND EXTERNAL_LIBS ${CUDNN_LIBRARY} ${CUDA_CUBLAS_LIBRARIES} ${CUDA_curand_LIBRARY})
endif(NOT WITH_DSO)
endif(WITH_GPU)

Expand Down
6 changes: 3 additions & 3 deletions paddle/framework/backward_test.cc
Original file line number Diff line number Diff line change
Expand Up @@ -32,9 +32,9 @@ class RowWiseAddOpMaker : public OpProtoAndCheckerMaker {
public:
RowWiseAddOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input X of Add").AsNoGradient();
AddInput("b", "Bias of Add").AsNoGradient();
AddOutput("Out", "Out of Add").AsNoGradient();
AddInput("X", "Input X of Add").NotInGradient();
AddInput("b", "Bias of Add").NotInGradient();
AddOutput("Out", "Out of Add").NotInGradient();
AddComment("Add Op");
}
};
Expand Down
2 changes: 1 addition & 1 deletion paddle/framework/framework.proto
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@ message OpProto {

optional bool duplicable = 3 [ default = false ];
optional bool intermediate = 4 [ default = false ];
optional bool no_gradient = 5 [ default = false ];
optional bool not_in_gradient = 5 [ default = false ];
}

// AttrProto describes the C++ type Attribute.
Expand Down
2 changes: 1 addition & 1 deletion paddle/framework/grad_op_builder.cc
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ static void TransOpArg(const OperatorBase* src_op, const OpArgType& src_type,
const auto& src_arg_list =
src_type == OpArgType::IN ? proto->inputs() : proto->outputs();
for (const auto& arg : src_arg_list) {
if (arg.no_gradient() && !is_grad) continue;
if (arg.not_in_gradient() && !is_grad) continue;
const std::string src_name = arg.name();
std::string dst_name = is_grad ? GradVarName(src_name) : src_name;
dst_inout[dst_name].reserve(src_inout.at(src_name).size());
Expand Down
4 changes: 2 additions & 2 deletions paddle/framework/grad_op_builder_test.cc
Original file line number Diff line number Diff line change
Expand Up @@ -26,10 +26,10 @@ class IOIgnoredOpMaker : public OpProtoAndCheckerMaker {
IOIgnoredOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("In1", "a single input");
AddInput("In2_mult", "a multiple input").AsDuplicable().AsNoGradient();
AddInput("In2_mult", "a multiple input").AsDuplicable().NotInGradient();
AddInput("In3_mult", "another multiple input").AsDuplicable();
AddOutput("Out1_mult", "a multiple output").AsDuplicable();
AddOutput("Out2", "a single output").AsNoGradient();
AddOutput("Out2", "a single output").NotInGradient();
AddComment("op with inputs and outputs ignored in gradient calculating");
}
};
Expand Down
7 changes: 2 additions & 5 deletions paddle/framework/operator.h
Original file line number Diff line number Diff line change
Expand Up @@ -184,11 +184,8 @@ class OpProtoAndCheckerMaker {
return *this;
}

// TODO(FengJiayi, yuyang18): `AsNoGradient` is a very bad name, because it
// means that input/output is not needed when calculate gradient. It does
// not mean no gradient when backward. It should be changed soon.
VariableBuilder& AsNoGradient() {
var_->set_no_gradient(true);
VariableBuilder& NotInGradient() {
var_->set_not_in_gradient(true);
return *this;
}
};
Expand Down
8 changes: 6 additions & 2 deletions paddle/gserver/layers/MKLDNNFcLayer.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -57,11 +57,14 @@ bool MKLDNNFcLayer::init(const LayerMap& layerMap,
}

void MKLDNNFcLayer::convertWeightsFromPaddle() {
if (FLAGS_use_mkldnn_wgt) {
if (hasInitedWgt_) {
return;
}

if (hasInitedWgt_) {
// TODO(TJ): dst format should get from wgtVal_
int dstFmt = PARAM_FORMAT_MKLDNN_OI;
int srcFmt = weight_->getParameterPtr()->getHeaderFormat();
if (srcFmt == dstFmt) {
return;
}

Expand All @@ -78,6 +81,7 @@ void MKLDNNFcLayer::convertWeightsFromPaddle() {
MatrixPtr paddleWgtT;
paddleWgt->transpose(paddleWgtT, true);
weight_->getW()->copyFrom(*paddleWgtT);
weight_->getParameterPtr()->setHeaderFormat(dstFmt);
hasInitedWgt_ = true;
}

Expand Down
27 changes: 20 additions & 7 deletions paddle/gserver/tests/MKLDNNTester.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -330,9 +330,7 @@ void MKLDNNTester::run(const TestConfig& dnn,
log_ = log;
lvl_ = level;

// Firstly test FLAGS_use_mkldnn_wgt = false
FLAGS_use_mkldnn_wgt = false;
// reset and run once
// Firstly test mkldnn init from PARAM_FORMAT_ORIGINAL weight
reset(dnn, ref, batchSize);
randomWgtDatas();
clearWgtDiffs();
Expand All @@ -342,17 +340,32 @@ void MKLDNNTester::run(const TestConfig& dnn,
runOnce();
}

// Then test FLAGS_use_mkldnn_wgt = true
FLAGS_use_mkldnn_wgt = true;
// after run once the mkldnn weight has been stored in dnnlayer
if (parameters_[DNN].empty()) {
// has no paramters
return;
}

// After run some iterations, the mkldnn weight has been stored in dnnLayer
// and we can also get the mkldnn weight parameter header format.
// Weight parameter should always be index 0 (and bias index 1).
// TODO(TJ): should also consider mean and var format when batchnorm ready
int dnnWgtFmt = parameters_[DNN][0]->getHeaderFormat();
int refWgtFmt = parameters_[REF][0]->getHeaderFormat();
if (dnnWgtFmt == refWgtFmt) {
// weight format are equal, so no need check more
return;
}

// then save the weights and restart again
vector<VectorPtr> dnnWgts, refWgts;
CHECK_EQ(parameters_[DNN].size(), parameters_[REF].size());
saveWgt(parameters_[DNN], dnnWgts);
saveWgt(parameters_[REF], refWgts);

// restart again with flag true
// restart again with dnn weight format
reset(dnn, ref, batchSize);
// TODO(TJ): should also considerate mean and var format when batchnorm ready
parameters_[DNN][0]->setHeaderFormat(dnnWgtFmt);

// restore wgt
restoreWgt(dnnWgts, parameters_[DNN]);
Expand Down
2 changes: 1 addition & 1 deletion paddle/gserver/tests/MKLDNNTester.h
Original file line number Diff line number Diff line change
Expand Up @@ -108,7 +108,7 @@ class MKLDNNTester {
* if many(>failRate) wrong(abs(dnn-ref)/abs(ref)>thres) points return the
* max(diff/ref)
* else return sum(abs(a-b)) / sum(abs(b))
* The return value should smaller than eps when passing.
* The return value should be smaller than eps when passing.
*/
double getDelta(const real* d1,
const real* d2,
Expand Down
2 changes: 1 addition & 1 deletion paddle/operators/mean_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ class MeanOpMaker : public framework::OpProtoAndCheckerMaker {
MeanOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The input of mean op");
AddOutput("Out", "The output of mean op").AsNoGradient();
AddOutput("Out", "The output of mean op").NotInGradient();
AddComment("Mean Operator");
}
};
Expand Down
3 changes: 2 additions & 1 deletion paddle/operators/mean_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -55,9 +55,10 @@ class MeanGradKernel : public framework::OpKernel {
IG->mutable_data<T>(context.GetPlace());

T ig_size = (T)framework::product(IG->dims());
Eigen::DSizes<int, 1> bcast(ig_size);

EigenVector<T>::Flatten(*IG).device(context.GetEigenDevice<Place>()) =
EigenScalar<T>::From(*OG) / ig_size;
(EigenVector<T>::From(*OG) / ig_size).broadcast(bcast);
}
};

Expand Down
3 changes: 2 additions & 1 deletion paddle/operators/sigmoid_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,8 @@ class SigmoidOpGrad : public framework::OperatorWithKernel {

protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
ctx.Output<Tensor>(0)->Resize(ctx.Input<Tensor>(0)->dims());
ctx.Output<Tensor>(framework::GradVarName("X"))
->Resize(ctx.Input<Tensor>("Y")->dims());
}
};

Expand Down
2 changes: 1 addition & 1 deletion paddle/operators/sigmoid_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@ class SigmoidKernel : public framework::OpKernel {
auto Y = EigenVector<T>::Flatten(*output);
auto place = context.GetEigenDevice<Place>();

Y.device(place) = 1.0 / (1.0 + (-1.0 * X).exp());
Y.device(place) = 1. / (1. + (-X).exp());
}
};

Expand Down
10 changes: 6 additions & 4 deletions paddle/parameter/Parameter.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,8 @@ Parameter::Parameter(const ParameterConfig& config, bool useGpu, bool doInit)
deviceId_(-1),
sharedCount_(0),
updateCounter_(0),
updated_(false) {
updated_(false),
headerFormat_(PARAM_FORMAT_ORIGINAL) {
setID(-1); /* capture uninitialized id */
if (useGpu_ && FLAGS_parallel_nn) {
/* gpu environment is specified by device property */
Expand Down Expand Up @@ -285,7 +286,7 @@ bool Parameter::save(const std::string& filename) const {
bool Parameter::save(std::ostream& s) const {
CpuVector vec(*bufs_[PARAMETER_VALUE].get());
Header header;
header.version = kFormatVersion;
header.format = headerFormat_;
header.valueSize = sizeof(real);
header.size = getSize();

Expand Down Expand Up @@ -344,8 +345,9 @@ bool Parameter::load(std::istream& s) {
Header header;
CHECK(s.read(reinterpret_cast<char*>(&header), sizeof(header)))
<< "Fail to read parameter " << getName();
CHECK_EQ(header.version, kFormatVersion) << "Incorrect format version: "
<< header.version;
CHECK(isHeaderFormatSupported(header.format)) << "Incorrect format version: "
<< header.format;
headerFormat_ = header.format;
CHECK_EQ(header.size, getSize())
<< "The size (" << header.size << ") in the file does not match the size "
<< "(" << getSize() << ") of the parameter: " << getName();
Expand Down
37 changes: 35 additions & 2 deletions paddle/parameter/Parameter.h
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,20 @@ limitations under the License. */

namespace paddle {

typedef enum {
/// The paddle original basic format
PARAM_FORMAT_ORIGINAL = 0,

/// See mkldnn_memory_format_t in
/// https://github.com/01org/mkl-dnn/blob/master/include/mkldnn_types.h
/// for a detailed description.
/// 2D weights tensor in the format (output channels, input channels).
PARAM_FORMAT_MKLDNN_OI,

/// The total format items numbers
PARAM_FORMAT_ITEMS,
} PARAM_FORMAT;

class SparsePrefetchRowCpuMatrix;

class Parameter;
Expand Down Expand Up @@ -242,14 +256,30 @@ class Parameter {
/// Initialize the value to 0
void zeroMem();

static const int kFormatVersion = 0;
/// file header structure
struct Header {
int32_t version; // = 0, file format version
int32_t format; // = PARAM_FORMAT
uint32_t valueSize; // = sizeof(real)
uint64_t size; // = getSize()
};

/**
* @brief Is the header format supported.
*/
static bool isHeaderFormatSupported(int32_t fmt) {
return fmt < PARAM_FORMAT_ITEMS;
}

/**
* @brief Get the format in header.
*/
int getHeaderFormat() { return headerFormat_; }

/**
* @brief Set the format in header.
*/
void setHeaderFormat(int32_t fmt) { headerFormat_ = fmt; }

/**
* @brief Parameter Update Hook.
*
Expand Down Expand Up @@ -321,6 +351,9 @@ class Parameter {
bool updated_;
SparseFormat format_;

/// The header format for saving or loading param
int32_t headerFormat_;

std::vector<std::shared_ptr<IParameterUpdaterHook>> updaterHooks_;

public:
Expand Down
7 changes: 4 additions & 3 deletions paddle/pserver/ParameterServer2.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1032,8 +1032,8 @@ void ParameterServer2::loadValueVector(const LoadValueRequest& request,
Parameter::Header header;
CHECK(fs.read(reinterpret_cast<char*>(&header), sizeof(header)))
<< "Fail to read parameters in pserver";
CHECK_EQ(header.version, Parameter::kFormatVersion)
<< "Incorrect format version: " << header.version;
CHECK(Parameter::isHeaderFormatSupported(header.format))
<< "Incorrect format version: " << header.format;
CHECK_EQ(header.size, (size_t)size_)
<< "The size (" << header.size << ") in the file does not match the size "
<< "(" << size_ << ") of the pserver: " << serverId_;
Expand Down Expand Up @@ -1063,7 +1063,8 @@ void ParameterServer2::saveValueVector(const SaveValueRequest& request,
CpuVector& vec = vectors_[PARAMETER_APPLY] ? *vectors_[PARAMETER_APPLY]
: *vectors_[PARAMETER_VALUE];
Parameter::Header header;
header.version = Parameter::kFormatVersion;
// TODO(TJ): save param headerFormat_
header.format = PARAM_FORMAT_ORIGINAL;
header.valueSize = sizeof(real);
header.size = size_;

Expand Down
2 changes: 0 additions & 2 deletions paddle/trainer/TrainerConfigHelper.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,6 @@ DECLARE_bool(with_gpu);
DECLARE_bool(parallel_nn);
DECLARE_string(config_args);
DECLARE_bool(use_mkldnn);
DECLARE_bool(use_mkldnn_wgt);

const char *kConfigParserModuleName = "paddle.trainer.config_parser";
const char *kConfigParserFuncName = "parse_config_and_serialize";
Expand All @@ -47,7 +46,6 @@ TrainerConfigHelper::TrainerConfigHelper(const std::string &configFilePath)
<< ",with_cost=" << FLAGS_with_cost << ",use_gpu=" << FLAGS_use_gpu
<< ",parallel_nn=" << FLAGS_parallel_nn
<< ",use_mkldnn=" << FLAGS_use_mkldnn
<< ",use_mkldnn_wgt=" << FLAGS_use_mkldnn_wgt
<< ",cudnn_version=" << hl_get_cudnn_lib_version();
if (!FLAGS_config_args.empty()) {
configArgs << "," << FLAGS_config_args;
Expand Down
1 change: 0 additions & 1 deletion paddle/utils/Flags.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,6 @@ DEFINE_bool(use_mkldnn, false, "Default still keep use CPU training");
DEFINE_bool(use_mkldnn, false, "Only support CPU training");
#endif

DEFINE_bool(use_mkldnn_wgt, false, "Init weight from CPU weight");
DEFINE_bool(parallel_nn,
false,
"Whether to use multi-threads to calculate one neural network."
Expand Down
1 change: 0 additions & 1 deletion paddle/utils/Flags.h
Original file line number Diff line number Diff line change
Expand Up @@ -41,4 +41,3 @@ DECLARE_string(predict_file);
DECLARE_bool(prev_batch_state);
DECLARE_string(init_model_path);
DECLARE_bool(use_mkldnn);
DECLARE_bool(use_mkldnn_wgt);
1 change: 1 addition & 0 deletions python/paddle/v2/framework/tests/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -26,3 +26,4 @@ py_test(test_operator SRCS test_operator.py)
py_test(test_uniform_random_op SRCS test_uniform_random_op.py)
py_test(test_recurrent_op SRCS test_recurrent_op.py)
py_test(test_sgd_op SRCS test_sgd_op.py)
py_test(test_gradient_checker SRCS test_gradient_checker.py)
Loading

0 comments on commit 230e613

Please sign in to comment.