-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
fix the bug in the creation of pp groups to avoid hang (#32890)
* update, test=develop
- Loading branch information
lilong12
authored
Jun 9, 2021
1 parent
f249a5f
commit 2b56b1b
Showing
5 changed files
with
188 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
159 changes: 159 additions & 0 deletions
159
python/paddle/fluid/tests/unittests/pipeline_mnist_multi_device.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,159 @@ | ||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from __future__ import print_function | ||
|
||
import numpy as np | ||
import argparse | ||
import time | ||
import math | ||
|
||
import paddle | ||
import paddle.fluid as fluid | ||
import paddle.fluid.profiler as profiler | ||
from paddle.fluid import core | ||
import unittest | ||
from multiprocessing import Process | ||
import os | ||
import signal | ||
from functools import reduce | ||
from test_dist_base import TestDistRunnerBase, runtime_main | ||
import paddle.distributed.fleet as fleet | ||
|
||
paddle.enable_static() | ||
|
||
DTYPE = "float32" | ||
paddle.dataset.mnist.fetch() | ||
|
||
# Fix seed for test | ||
fluid.default_startup_program().random_seed = 1 | ||
fluid.default_main_program().random_seed = 1 | ||
|
||
|
||
def cnn_model(data): | ||
conv_pool_1 = fluid.nets.simple_img_conv_pool( | ||
input=data, | ||
filter_size=5, | ||
num_filters=20, | ||
pool_size=2, | ||
pool_stride=2, | ||
act="relu", | ||
param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant( | ||
value=0.01))) | ||
conv_pool_2 = fluid.nets.simple_img_conv_pool( | ||
input=conv_pool_1, | ||
filter_size=5, | ||
num_filters=50, | ||
pool_size=2, | ||
pool_stride=2, | ||
act="relu", | ||
param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant( | ||
value=0.01))) | ||
|
||
SIZE = 10 | ||
input_shape = conv_pool_2.shape | ||
param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE] | ||
scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5 | ||
|
||
with fluid.device_guard("gpu:1"): | ||
predict = fluid.layers.fc( | ||
input=conv_pool_2, | ||
size=SIZE, | ||
act="softmax", | ||
param_attr=fluid.param_attr.ParamAttr( | ||
initializer=fluid.initializer.Constant(value=0.01))) | ||
# To cover @RENAMED@GRADIENT | ||
predict2 = fluid.layers.fc( | ||
input=conv_pool_1, | ||
size=SIZE, | ||
act="softmax", | ||
param_attr=fluid.param_attr.ParamAttr( | ||
initializer=fluid.initializer.Constant(value=0.01))) | ||
predict += predict2 | ||
return predict | ||
|
||
|
||
class TestDistMnist2x2(TestDistRunnerBase): | ||
def get_model(self, batch_size=2, use_dgc=False, dist_strategy=None): | ||
# Input data | ||
with fluid.device_guard("gpu:0"): | ||
images = fluid.layers.data( | ||
name='pixel', shape=[1, 28, 28], dtype=DTYPE) | ||
label = fluid.layers.data(name='label', shape=[1], dtype='int64') | ||
|
||
if dist_strategy: | ||
data_loader = fluid.io.DataLoader.from_generator( | ||
feed_list=[images, label], | ||
capacity=64, | ||
use_double_buffer=False, | ||
iterable=False) | ||
# Train program | ||
predict = cnn_model(images) | ||
with fluid.device_guard("gpu:1"): | ||
cost = fluid.layers.cross_entropy(input=predict, label=label) | ||
avg_cost = fluid.layers.mean(x=cost) | ||
|
||
# Evaluator | ||
with fluid.device_guard("gpu:1"): | ||
batch_size_tensor = fluid.layers.create_tensor(dtype='int64') | ||
batch_acc = fluid.layers.accuracy( | ||
input=predict, label=label, total=batch_size_tensor) | ||
|
||
inference_program = fluid.default_main_program().clone() | ||
base_lr = self.lr | ||
passes = [30, 60, 80, 90] | ||
steps_per_pass = 10 | ||
bd = [steps_per_pass * p for p in passes] | ||
lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)] | ||
lr_val = fluid.layers.piecewise_decay(boundaries=bd, values=lr) | ||
opt = fluid.optimizer.Momentum( | ||
learning_rate=lr_val, | ||
momentum=0.9, | ||
grad_clip=fluid.clip.GradientClipByGlobalNorm(clip_norm=1.0)) | ||
|
||
acc_steps = 2 # accumulated steps for pipeline | ||
if dist_strategy: | ||
# Reader | ||
train_reader = paddle.batch( | ||
paddle.dataset.mnist.test(), batch_size=batch_size) | ||
test_reader = paddle.batch( | ||
paddle.dataset.mnist.test(), batch_size=batch_size) | ||
fleet.init(is_collective=True) | ||
strategy = fleet.DistributedStrategy() | ||
strategy.pipeline = True | ||
strategy.amp = True | ||
strategy.pipeline_configs = { | ||
'micro_batch_size': batch_size, | ||
'schedule_mode': 'F-then-B', | ||
'accumulate_steps': acc_steps | ||
} | ||
dist_opt = fleet.distributed_optimizer( | ||
optimizer=opt, strategy=strategy) | ||
dist_opt.minimize(avg_cost) | ||
else: | ||
opt.minimize(avg_cost) | ||
# Reader | ||
train_reader = paddle.batch( | ||
paddle.dataset.mnist.test(), batch_size=batch_size * acc_steps) | ||
test_reader = paddle.batch( | ||
paddle.dataset.mnist.test(), batch_size=batch_size * acc_steps) | ||
|
||
if dist_strategy: | ||
return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict, data_loader | ||
else: | ||
return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict | ||
|
||
|
||
if __name__ == "__main__": | ||
runtime_main(TestDistMnist2x2) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters