-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add ut for lookup_table op trt converter (#53563)
- Loading branch information
1 parent
a01b20d
commit 2f50338
Showing
2 changed files
with
143 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,142 @@ | ||
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import unittest | ||
from functools import partial | ||
from typing import Any, Dict, List | ||
|
||
import numpy as np | ||
from program_config import ProgramConfig, TensorConfig | ||
from trt_layer_auto_scan_test import TrtLayerAutoScanTest | ||
|
||
import paddle.inference as paddle_infer | ||
|
||
|
||
class TrtConvertLookupTableV2Test(TrtLayerAutoScanTest): | ||
def sample_program_configs(self): | ||
def generate_input1(dims, attrs: List[Dict[str, Any]]): | ||
if dims == 1: | ||
return np.array([32]).astype(np.int64) | ||
elif dims == 2: | ||
return np.array([[3, 16, 24], [6, 4, 47]]).astype(np.int64) | ||
else: | ||
return np.array( | ||
[ | ||
[[3, 16, 24], [30, 16, 14], [2, 6, 24]], | ||
[[3, 26, 34], [3, 16, 24], [3, 6, 4]], | ||
[[3, 16, 24], [53, 16, 54], [30, 1, 24]], | ||
] | ||
).astype(np.int64) | ||
|
||
def generate_input2(dims, attrs: List[Dict[str, Any]]): | ||
return np.random.uniform(-1, 1, [64, 4]).astype('float32') | ||
|
||
for dims in [1, 2, 3]: | ||
self.dims = dims | ||
|
||
ops_config = [ | ||
{ | ||
"op_type": "lookup_table_v2", | ||
"op_inputs": {"Ids": ["indices"], "W": ["data"]}, | ||
"op_outputs": {"Out": ["out_data"]}, | ||
"op_attrs": {}, | ||
} | ||
] | ||
ops = self.generate_op_config(ops_config) | ||
|
||
program_config = ProgramConfig( | ||
ops=ops, | ||
weights={ | ||
"data": TensorConfig( | ||
data_gen=partial(generate_input2, {}, {}) | ||
) | ||
}, | ||
inputs={ | ||
"indices": TensorConfig( | ||
data_gen=partial(generate_input1, dims, {}) | ||
) | ||
}, | ||
outputs=["out_data"], | ||
) | ||
|
||
yield program_config | ||
|
||
def sample_predictor_configs( | ||
self, program_config | ||
) -> (paddle_infer.Config, List[int], float): | ||
def generate_dynamic_shape(attrs): | ||
if self.dims == 1: | ||
self.dynamic_shape.min_input_shape = { | ||
"indices": [1], | ||
"data": [64, 4], | ||
} | ||
self.dynamic_shape.max_input_shape = { | ||
"indices": [1], | ||
"data": [64, 4], | ||
} | ||
self.dynamic_shape.opt_input_shape = { | ||
"indices": [1], | ||
"data": [64, 4], | ||
} | ||
elif self.dims == 2: | ||
self.dynamic_shape.min_input_shape = { | ||
"indices": [2, 3], | ||
"data": [64, 4], | ||
} | ||
self.dynamic_shape.max_input_shape = { | ||
"indices": [2, 3], | ||
"data": [64, 4], | ||
} | ||
self.dynamic_shape.opt_input_shape = { | ||
"indices": [2, 3], | ||
"data": [64, 4], | ||
} | ||
else: | ||
self.dynamic_shape.min_input_shape = { | ||
"indices": [3, 3, 3], | ||
"data": [64, 4], | ||
} | ||
self.dynamic_shape.max_input_shape = { | ||
"indices": [3, 3, 3], | ||
"data": [64, 4], | ||
} | ||
self.dynamic_shape.opt_input_shape = { | ||
"indices": [3, 3, 3], | ||
"data": [64, 4], | ||
} | ||
|
||
def generate_trt_nodes_num(attrs, dynamic_shape): | ||
return 1, 2 | ||
|
||
attrs = [ | ||
program_config.ops[i].attrs for i in range(len(program_config.ops)) | ||
] | ||
|
||
# for dynamic_shape mode | ||
generate_dynamic_shape(attrs) | ||
self.trt_param.precision = paddle_infer.PrecisionType.Float32 | ||
yield self.create_inference_config(), generate_trt_nodes_num( | ||
attrs, True | ||
), 1e-5 | ||
self.trt_param.precision = paddle_infer.PrecisionType.Half | ||
yield self.create_inference_config(), generate_trt_nodes_num( | ||
attrs, True | ||
), (1e-3, 1e-3) | ||
|
||
def test(self): | ||
self.run_test() | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters