-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
425 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,135 @@ | ||
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/fluid/operators/mean_op.h" | ||
#include "paddle/fluid/platform/float16.h" | ||
#include "paddle/fluid/operators/npu_op_runner.h" | ||
|
||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
template <typename DeviceContext, typename T> | ||
class MeanNPUKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
auto* x = ctx.Input<framework::LoDTensor>("X"); | ||
auto* out = ctx.Output<framework::LoDTensor>("Out"); | ||
|
||
auto reduce_ndim = x->dims().size(); | ||
std::vector<int> axes; | ||
for (auto i = 0; i < reduce_ndim; ++i) { | ||
axes.push_back(i); | ||
} | ||
|
||
framework::NPUAttributeMap attr_input = { | ||
{"keep_dims", false}, | ||
{"axes", axes}}; | ||
|
||
std::vector<int64_t> out_dims; | ||
out_dims.push_back(1); | ||
out->Resize(framework::make_ddim(out_dims)); | ||
out->mutable_data<T>(ctx.GetPlace()); | ||
|
||
Tensor reduced_out(x->type()); | ||
std::vector<int64_t> reduced_dout_dims; | ||
reduced_dout_dims.push_back(1); | ||
reduced_out.Resize(framework::make_ddim(reduced_dout_dims)); | ||
reduced_out.mutable_data<T>(ctx.GetPlace()); | ||
|
||
auto runner = NpuOpRunner("ReduceMeanD", | ||
{*x}, | ||
{*out}, | ||
attr_input); | ||
|
||
auto stream = | ||
ctx.template device_context< | ||
paddle::platform::NPUDeviceContext>() | ||
.stream(); | ||
runner.Run(stream); | ||
} | ||
}; | ||
|
||
|
||
template <typename DeviceContext, typename T> | ||
class MeanGradNPUKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& context) const override { | ||
auto stream = | ||
context.template device_context< | ||
paddle::platform::NPUDeviceContext>() | ||
.stream(); | ||
|
||
auto grad = context.Input<Tensor>(framework::GradVarName("Out")); | ||
|
||
PADDLE_ENFORCE_EQ(grad->numel(), 1, | ||
platform::errors::InvalidArgument( | ||
"Mean Gradient Input Tensor len should be 1. But " | ||
"received Out@Grad's elements num is %d.", | ||
grad->numel())); | ||
|
||
auto IG = context.Output<Tensor>(framework::GradVarName("X")); | ||
IG->mutable_data<T>(context.GetPlace()); | ||
|
||
// ones | ||
Tensor ones(grad->type()); | ||
std::vector<int64_t> dout_dims; | ||
for (auto i = 0; i < IG->dims().size(); ++i) { | ||
dout_dims.push_back(IG->dims()[i]); | ||
} | ||
ones.Resize(framework::make_ddim(dout_dims)); | ||
ones.mutable_data<T>(context.GetPlace()); | ||
auto runner_ones = NpuOpRunner("OnesLike", {*IG}, {ones}, {}); | ||
runner_ones.Run(stream); | ||
|
||
// means | ||
Tensor mean_tensor(grad->type()); | ||
mean_tensor.Resize({1}); | ||
mean_tensor.mutable_data<T>(context.GetPlace()); | ||
std::vector<float> mean_vec; | ||
mean_vec.push_back(1.0/static_cast<float>(IG->numel())); | ||
framework::TensorFromVector(mean_vec, | ||
context.device_context(), | ||
&mean_tensor); | ||
|
||
// means mul ones | ||
Tensor mean_ma(grad->type()); | ||
mean_ma.Resize(framework::make_ddim(dout_dims)); | ||
mean_ma.mutable_data<T>(context.GetPlace()); | ||
auto runner_mul_1 = NpuOpRunner("Mul", {mean_tensor, ones}, {mean_ma}, {}); | ||
runner_mul_1.Run(stream); | ||
|
||
// and mul grad | ||
auto runner_mul_2 = NpuOpRunner("Mul", {mean_ma, *grad}, {*IG}, {}); | ||
runner_mul_2.Run(stream); | ||
} | ||
}; | ||
|
||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
namespace plat = paddle::platform; | ||
REGISTER_OP_NPU_KERNEL( | ||
mean, | ||
ops::MeanNPUKernel<paddle::platform::NPUDeviceContext, int>, | ||
ops::MeanNPUKernel<paddle::platform::NPUDeviceContext, float>, | ||
ops::MeanNPUKernel<paddle::platform::NPUDeviceContext, double>, | ||
ops::MeanNPUKernel<paddle::platform::NPUDeviceContext, plat::float16>) | ||
|
||
|
||
REGISTER_OP_NPU_KERNEL( | ||
mean_grad, | ||
ops::MeanGradNPUKernel<paddle::platform::NPUDeviceContext, int>, | ||
ops::MeanGradNPUKernel<paddle::platform::NPUDeviceContext, float>, | ||
ops::MeanGradNPUKernel<paddle::platform::NPUDeviceContext, double>, | ||
ops::MeanGradNPUKernel<paddle::platform::NPUDeviceContext, plat::float16>) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,139 @@ | ||
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#ifndef _WIN32 | ||
#include <unistd.h> | ||
#endif | ||
|
||
#include <string> | ||
#include <thread> // NOLINT | ||
#include <vector> | ||
|
||
#include "gtest/gtest.h" | ||
#include "paddle/fluid/framework/op_registry.h" | ||
#include "paddle/fluid/framework/operator.h" | ||
#include "paddle/fluid/framework/program_desc.h" | ||
#include "paddle/fluid/operators/dropout_op.h" | ||
#include "paddle/fluid/operators/math/math_function.h" | ||
#include "paddle/fluid/string/printf.h" | ||
|
||
namespace f = paddle::framework; | ||
namespace p = paddle::platform; | ||
namespace m = paddle::operators::math; | ||
|
||
USE_OP(mean); | ||
USE_OP_DEVICE_KERNEL(mean, NPU); | ||
USE_OP(mean_grad); | ||
USE_OP_DEVICE_KERNEL(mean_grad, NPU); | ||
|
||
template <typename T> | ||
void Compare(f::Scope* scope, const p::DeviceContext& ctx, | ||
std::string op_type) { | ||
// init | ||
auto x = scope->Var("X"); | ||
auto tensor_x = x->GetMutable<f::LoDTensor>(); | ||
|
||
std::vector<T> init; | ||
init.push_back(static_cast<T>(1.0)); | ||
init.push_back(static_cast<T>(2.0)); | ||
init.push_back(static_cast<T>(3.0)); | ||
init.push_back(static_cast<T>(4.0)); | ||
|
||
TensorFromVector(init, ctx, tensor_x); | ||
tensor_x->Resize({4}); | ||
|
||
ctx.Wait(); | ||
|
||
auto place = ctx.GetPlace(); | ||
auto out = scope->Var("Out"); | ||
auto tensor_out = out->GetMutable<f::LoDTensor>(); | ||
|
||
auto op = f::OpRegistry::CreateOp(op_type, | ||
{{"X", {"X"}}}, | ||
{{"Out", {"Out"}}}, | ||
{}); | ||
|
||
op->Run(*scope, place); | ||
|
||
std::vector<float> out_vec; | ||
TensorToVector(*tensor_out, ctx, &out_vec); | ||
|
||
ctx.Wait(); | ||
|
||
EXPECT_EQ((uint32_t)out_vec.size(), (uint32_t)1); | ||
EXPECT_EQ((float)out_vec[0], (float)2.5); | ||
} | ||
|
||
template <typename T> | ||
void CompareGrad(f::Scope* scope, const p::DeviceContext& ctx, | ||
std::string op_type) { | ||
// init | ||
auto dout = scope->Var("DOut"); | ||
auto tensor_dout = dout->GetMutable<f::LoDTensor>(); | ||
float dvalue = 2.0; | ||
tensor_dout->Resize({1}); | ||
std::vector<T> init_dout; | ||
init_dout.push_back(static_cast<T>(dvalue)); | ||
TensorFromVector(init_dout, ctx, tensor_dout); | ||
ctx.Wait(); | ||
|
||
auto x = scope->Var("X"); | ||
auto tensor_x = x->GetMutable<f::LoDTensor>(); | ||
tensor_x->Resize({4}); | ||
|
||
auto dx = scope->Var("DX"); | ||
auto tensor_dx = dx->GetMutable<f::LoDTensor>(); | ||
tensor_dx->Resize({4}); | ||
|
||
ctx.Wait(); | ||
|
||
auto op = f::OpRegistry::CreateOp(op_type, | ||
{{"Out@GRAD", {"DOut"}}, | ||
{"X", {"X"}}}, | ||
{{"X@GRAD", {"DX"}}}, | ||
{}); | ||
|
||
auto place = ctx.GetPlace(); | ||
op->Run(*scope, place); | ||
|
||
std::vector<float> out_vec; | ||
TensorToVector(*tensor_dx, ctx, &out_vec); | ||
|
||
ctx.Wait(); | ||
|
||
EXPECT_EQ((uint32_t)out_vec.size(), (uint32_t)4); | ||
EXPECT_EQ((float)out_vec[0], (float)1.0/dvalue); | ||
EXPECT_EQ((float)out_vec[1], (float)1.0/dvalue); | ||
EXPECT_EQ((float)out_vec[2], (float)1.0/dvalue); | ||
EXPECT_EQ((float)out_vec[3], (float)1.0/dvalue); | ||
} | ||
|
||
TEST(mean, NPU_fp32) { | ||
f::Scope scope; | ||
p::NPUDeviceContext ctx(p::NPUPlace(0)); | ||
Compare<float>(&scope, ctx, "mean"); | ||
} | ||
|
||
TEST(mean, NPU_fp16) { | ||
f::Scope scope; | ||
p::NPUDeviceContext ctx(p::NPUPlace(0)); | ||
Compare<float>(&scope, ctx, "mean"); | ||
} | ||
|
||
|
||
TEST(mean_grad, NPU_fp32) { | ||
f::Scope scope; | ||
p::NPUDeviceContext ctx(p::NPUPlace(0)); | ||
CompareGrad<float>(&scope, ctx, "mean_grad"); | ||
} |
Oops, something went wrong.