-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[xpu]Add vis_decoder_attention_xpu_pass && modify qkv_attention_xpu_k…
…ernel (#60361)
- Loading branch information
Showing
10 changed files
with
617 additions
and
13 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
313 changes: 313 additions & 0 deletions
313
paddle/fluid/framework/ir/xpu/decoder_attention_xpu_fuse_pass.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,313 @@ | ||
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include "paddle/fluid/framework/ir/xpu/decoder_attention_xpu_fuse_pass.h" | ||
|
||
#include "glog/logging.h" | ||
|
||
#include "paddle/fluid/framework/ir/graph_pattern_detector.h" | ||
#include "paddle/fluid/framework/ir/xpu/pass_utils.h" | ||
#include "paddle/fluid/framework/op_version_registry.h" | ||
#include "paddle/fluid/platform/enforce.h" | ||
|
||
namespace paddle { | ||
namespace framework { | ||
namespace ir { | ||
|
||
namespace patterns { | ||
|
||
struct DecoderAttentionFusePattern : public PatternBase { | ||
DecoderAttentionFusePattern(PDPattern* pattern, | ||
const std::string& name_scope); | ||
|
||
// declare operator node's name | ||
PATTERN_DECL_NODE(reshape2_1); | ||
PATTERN_DECL_NODE(reshape2_2); | ||
PATTERN_DECL_NODE(reshape2_3); | ||
PATTERN_DECL_NODE(transpose2_1); | ||
PATTERN_DECL_NODE(transpose2_2); | ||
PATTERN_DECL_NODE(transpose2_3); | ||
PATTERN_DECL_NODE(qk_matmul); | ||
PATTERN_DECL_NODE(scale); | ||
PATTERN_DECL_NODE(qk_softmax); | ||
PATTERN_DECL_NODE(qkv_matmul); | ||
PATTERN_DECL_NODE(transpose2_4); | ||
PATTERN_DECL_NODE(reshape2_4); | ||
|
||
// declare variable node's name | ||
PATTERN_DECL_NODE(input_q); | ||
PATTERN_DECL_NODE(input_k); | ||
PATTERN_DECL_NODE(input_v); | ||
PATTERN_DECL_NODE(reshape2_1_out); | ||
PATTERN_DECL_NODE(reshape2_2_out); | ||
PATTERN_DECL_NODE(reshape2_3_out); | ||
PATTERN_DECL_NODE(transpose2_1_out); | ||
PATTERN_DECL_NODE(transpose2_2_out); | ||
PATTERN_DECL_NODE(transpose2_3_out); | ||
PATTERN_DECL_NODE(qk_matmul_out); | ||
PATTERN_DECL_NODE(scale_out); | ||
PATTERN_DECL_NODE(qk_softmax_out); | ||
PATTERN_DECL_NODE(qkv_matmul_out); | ||
PATTERN_DECL_NODE(transpose2_4_out); | ||
PATTERN_DECL_NODE(output); | ||
}; | ||
|
||
DecoderAttentionFusePattern::DecoderAttentionFusePattern( | ||
PDPattern* pattern, const std::string& name_scope) | ||
: PatternBase(pattern, name_scope, name_scope) { | ||
auto* input_q = pattern->NewNode(input_q_repr()) | ||
->assert_is_op_input("reshape2", "X") | ||
->AsInput(); | ||
auto* input_k = pattern->NewNode(input_k_repr()) | ||
->assert_is_op_input("reshape2", "X") | ||
->AsInput(); | ||
auto* input_v = pattern->NewNode(input_v_repr()) | ||
->assert_is_op_input("reshape2", "X") | ||
->AsInput(); | ||
auto* reshape2_1 = | ||
pattern->NewNode(reshape2_1_repr())->assert_is_op("reshape2"); | ||
auto* reshape2_1_out = pattern->NewNode(reshape2_1_out_repr()) | ||
->assert_is_op_output("reshape2", "Out") | ||
->assert_is_op_input("transpose2", "X"); | ||
auto* reshape2_2 = | ||
pattern->NewNode(reshape2_2_repr())->assert_is_op("reshape2"); | ||
auto* reshape2_2_out = pattern->NewNode(reshape2_2_out_repr()) | ||
->assert_is_op_output("reshape2", "Out") | ||
->assert_is_op_input("transpose2", "X"); | ||
auto* reshape2_3 = | ||
pattern->NewNode(reshape2_3_repr())->assert_is_op("reshape2"); | ||
auto* reshape2_3_out = pattern->NewNode(reshape2_3_out_repr()) | ||
->assert_is_op_output("reshape2", "Out") | ||
->assert_is_op_input("transpose2", "X"); | ||
auto* transpose2_1 = | ||
pattern->NewNode(transpose2_1_repr()) | ||
->assert_is_op("transpose2") | ||
->assert_more([](Node* node) { | ||
auto* op_desc = node->Op(); | ||
auto axis = op_desc->GetAttrIfExists<std::vector<int>>("axis"); | ||
size_t axis_rank = axis.size(); | ||
return axis_rank == 4 && axis[0] == 0 && axis[1] == 2 && | ||
axis[2] == 1 && axis[3] == 3; | ||
}); | ||
|
||
auto* transpose2_1_out = pattern->NewNode(transpose2_1_out_repr()) | ||
->assert_is_op_output("transpose2", "Out") | ||
->assert_is_op_input("matmul_v2", "X"); | ||
auto* transpose2_2 = | ||
pattern->NewNode(transpose2_2_repr()) | ||
->assert_is_op("transpose2") | ||
->assert_more([](Node* node) { | ||
auto* op_desc = node->Op(); | ||
auto axis = op_desc->GetAttrIfExists<std::vector<int>>("axis"); | ||
size_t axis_rank = axis.size(); | ||
return axis_rank == 4 && axis[0] == 0 && axis[1] == 2 && | ||
axis[2] == 1 && axis[3] == 3; | ||
}); | ||
auto* transpose2_2_out = pattern->NewNode(transpose2_2_out_repr()) | ||
->assert_is_op_output("transpose2", "Out") | ||
->assert_is_op_input("matmul_v2", "Y"); | ||
auto* transpose2_3 = | ||
pattern->NewNode(transpose2_3_repr()) | ||
->assert_is_op("transpose2") | ||
->assert_more([](Node* node) { | ||
auto* op_desc = node->Op(); | ||
auto axis = op_desc->GetAttrIfExists<std::vector<int>>("axis"); | ||
size_t axis_rank = axis.size(); | ||
return axis_rank == 4 && axis[0] == 0 && axis[1] == 2 && | ||
axis[2] == 1 && axis[3] == 3; | ||
}); | ||
auto* transpose2_3_out = pattern->NewNode(transpose2_3_out_repr()) | ||
->assert_is_op_output("transpose2", "Out") | ||
->assert_is_op_input("matmul_v2", "Y"); | ||
auto* qk_matmul = | ||
pattern->NewNode(qk_matmul_repr())->assert_is_op("matmul_v2"); | ||
auto* qk_matmul_out = pattern->NewNode(qk_matmul_out_repr()) | ||
->assert_is_op_output("matmul_v2", "Out") | ||
->assert_is_op_input("scale", "X"); | ||
auto* scale = pattern->NewNode(scale_repr())->assert_is_op("scale"); | ||
auto* scale_out = pattern->NewNode(scale_out_repr()) | ||
->assert_is_op_output("scale", "Out") | ||
->assert_is_op_input("softmax", "X"); | ||
auto* qk_softmax = | ||
pattern->NewNode(qk_softmax_repr())->assert_is_op("softmax"); | ||
auto* qk_softmax_out = pattern->NewNode(qk_softmax_out_repr()) | ||
->assert_is_op_output("softmax", "Out") | ||
->assert_is_op_input("matmul_v2", "X"); | ||
auto* qkv_matmul = | ||
pattern->NewNode(qkv_matmul_repr())->assert_is_op("matmul_v2"); | ||
auto* qkv_matmul_out = pattern->NewNode(qkv_matmul_out_repr()) | ||
->assert_is_op_output("matmul_v2", "Out") | ||
->assert_is_op_input("transpose2", "X"); | ||
auto* transpose2_4 = | ||
pattern->NewNode(transpose2_4_repr())->assert_is_op("transpose2"); | ||
auto* transpose2_4_out = pattern->NewNode(transpose2_4_out_repr()) | ||
->assert_is_op_output("transpose2", "Out") | ||
->assert_is_op_input("reshape2", "X"); | ||
auto* reshape2_4 = | ||
pattern->NewNode(reshape2_4_repr())->assert_is_op("reshape2"); | ||
auto* output = pattern->NewNode(output_repr()) | ||
->AsOutput() | ||
->assert_is_op_output("reshape2", "Out"); | ||
|
||
// link nodes | ||
reshape2_1->LinksFrom({input_q}).LinksTo({reshape2_1_out}); | ||
reshape2_2->LinksFrom({input_k}).LinksTo({reshape2_2_out}); | ||
reshape2_3->LinksFrom({input_v}).LinksTo({reshape2_3_out}); | ||
transpose2_1->LinksFrom({reshape2_1_out}).LinksTo({transpose2_1_out}); | ||
transpose2_2->LinksFrom({reshape2_2_out}).LinksTo({transpose2_2_out}); | ||
transpose2_3->LinksFrom({reshape2_3_out}).LinksTo({transpose2_3_out}); | ||
qk_matmul->LinksFrom({transpose2_1_out, transpose2_2_out}) | ||
.LinksTo({qk_matmul_out}); | ||
scale->LinksFrom({qk_matmul_out}).LinksTo({scale_out}); | ||
qk_softmax->LinksFrom({scale_out}).LinksTo({qk_softmax_out}); | ||
qkv_matmul->LinksFrom({qk_softmax_out, transpose2_3_out}) | ||
.LinksTo({qkv_matmul_out}); | ||
transpose2_4->LinksFrom({qkv_matmul_out}).LinksTo({transpose2_4_out}); | ||
reshape2_4->LinksFrom({transpose2_4_out}).LinksTo({output}); | ||
} | ||
|
||
} // namespace patterns | ||
|
||
void DecoderAttentionXPUFusePass::ApplyDecoderAttentionXPUFuse( | ||
ir::Graph* graph) const { | ||
GraphPatternDetector gpd; | ||
patterns::DecoderAttentionFusePattern pattern(gpd.mutable_pattern(), | ||
name_scope_); | ||
int found_subgraph_count = 0; | ||
|
||
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, | ||
Graph* graph) { | ||
VLOG(4) << "handle DecoderAttentionXPUFusePass"; | ||
|
||
// declare operator node's name | ||
GET_IR_NODE(reshape2_1); | ||
GET_IR_NODE(reshape2_2); | ||
GET_IR_NODE(reshape2_3); | ||
GET_IR_NODE(transpose2_1); | ||
GET_IR_NODE(transpose2_2); | ||
GET_IR_NODE(transpose2_3); | ||
GET_IR_NODE(qk_matmul); | ||
GET_IR_NODE(scale); | ||
GET_IR_NODE(qk_softmax); | ||
GET_IR_NODE(qkv_matmul); | ||
GET_IR_NODE(transpose2_4); | ||
GET_IR_NODE(reshape2_4); | ||
|
||
// declare variable node's name | ||
GET_IR_NODE(input_q); | ||
GET_IR_NODE(input_k); | ||
GET_IR_NODE(input_v); | ||
GET_IR_NODE(reshape2_1_out); | ||
GET_IR_NODE(reshape2_2_out); | ||
GET_IR_NODE(reshape2_3_out); | ||
GET_IR_NODE(transpose2_1_out); | ||
GET_IR_NODE(transpose2_2_out); | ||
GET_IR_NODE(transpose2_3_out); | ||
GET_IR_NODE(qk_matmul_out); | ||
GET_IR_NODE(scale_out); | ||
GET_IR_NODE(qk_softmax_out); | ||
GET_IR_NODE(qkv_matmul_out); | ||
GET_IR_NODE(transpose2_4_out); | ||
GET_IR_NODE(output); | ||
|
||
// Generate fuse op | ||
auto* block = reshape2_1->Op()->Block(); | ||
framework::OpDesc fused_op_desc(block); | ||
fused_op_desc.SetType("qkv_attention_xpu"); | ||
|
||
// set input of fuse_op | ||
fused_op_desc.SetInput("q", {input_q->Name()}); | ||
fused_op_desc.SetInput("k", {input_k->Name()}); | ||
fused_op_desc.SetInput("v", {input_v->Name()}); | ||
|
||
// set attributes of fuse_op | ||
float scale_val = PADDLE_GET_CONST(float, scale->Op()->GetAttr("scale")); | ||
fused_op_desc.SetAttr("alpha", scale_val); | ||
fused_op_desc.SetAttr( | ||
"head_num", static_cast<int>(transpose2_1_out->Var()->GetShape()[1])); | ||
fused_op_desc.SetAttr( | ||
"head_dim", static_cast<int>(transpose2_1_out->Var()->GetShape()[3])); | ||
// In this pattern, there is only one possible situation. | ||
fused_op_desc.SetAttr("qkv_fc_fusion", false); | ||
|
||
// TODO(tianrui): support more out_dtype | ||
fused_op_desc.SetAttr("out_dtype", input_q->Var()->GetDataType()); | ||
|
||
// set output of fuse_op | ||
VarDesc fused_op_out_max_desc("qkv_max"); | ||
Node* fused_op_out_max = graph->CreateVarNode(&fused_op_out_max_desc); | ||
fused_op_desc.SetOutput("qkv_max", {"qkv_max"}); | ||
fused_op_desc.SetOutput("qkv", {output->Name()}); | ||
|
||
auto* fused_op = graph->CreateOpNode(&fused_op_desc); | ||
|
||
IR_NODE_LINK_TO(input_q, fused_op); | ||
IR_NODE_LINK_TO(input_k, fused_op); | ||
IR_NODE_LINK_TO(input_v, fused_op); | ||
IR_NODE_LINK_TO(fused_op, output); | ||
IR_NODE_LINK_TO(fused_op, fused_op_out_max); | ||
|
||
// delete useless node | ||
std::unordered_set<const Node*> del_node_set; | ||
del_node_set.insert(reshape2_1); | ||
del_node_set.insert(reshape2_2); | ||
del_node_set.insert(reshape2_3); | ||
del_node_set.insert(transpose2_1); | ||
del_node_set.insert(transpose2_2); | ||
del_node_set.insert(transpose2_3); | ||
del_node_set.insert(qk_matmul); | ||
del_node_set.insert(scale); | ||
del_node_set.insert(qk_softmax); | ||
del_node_set.insert(qkv_matmul); | ||
del_node_set.insert(transpose2_4); | ||
del_node_set.insert(reshape2_4); | ||
del_node_set.insert(reshape2_1_out); | ||
del_node_set.insert(reshape2_2_out); | ||
del_node_set.insert(reshape2_3_out); | ||
del_node_set.insert(transpose2_1_out); | ||
del_node_set.insert(transpose2_2_out); | ||
del_node_set.insert(transpose2_3_out); | ||
del_node_set.insert(qk_matmul_out); | ||
del_node_set.insert(scale_out); | ||
del_node_set.insert(qk_softmax_out); | ||
del_node_set.insert(qkv_matmul_out); | ||
del_node_set.insert(transpose2_4_out); | ||
|
||
GraphSafeRemoveNodes(graph, del_node_set); | ||
found_subgraph_count++; | ||
}; | ||
|
||
gpd(graph, handler); | ||
AddStatis(found_subgraph_count); | ||
} | ||
|
||
void DecoderAttentionXPUFusePass::ApplyImpl(ir::Graph* graph) const { | ||
PADDLE_ENFORCE_NOT_NULL( | ||
graph, platform::errors::PreconditionNotMet("graph should not be null.")); | ||
Init(name_scope_, graph); | ||
|
||
ApplyDecoderAttentionXPUFuse(graph); | ||
} | ||
|
||
} // namespace ir | ||
} // namespace framework | ||
} // namespace paddle | ||
|
||
REGISTER_PASS(decoder_attention_xpu_fuse_pass, | ||
paddle::framework::ir::DecoderAttentionXPUFusePass); | ||
|
||
REGISTER_PASS_CAPABILITY(decoder_attention_xpu_fuse_pass) | ||
.AddCombination( | ||
paddle::framework::compatible::OpVersionComparatorCombination().EQ( | ||
"qkv_attention_xpu", 0)); |
Oops, something went wrong.