-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #6150 from wanghaox/prior_box
prior box operator for ssd
- Loading branch information
Showing
3 changed files
with
490 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,154 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/operators/prior_box_op.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
class PriorBoxOp : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
||
void InferShape(framework::InferShapeContext* ctx) const override { | ||
PADDLE_ENFORCE(ctx->HasInput("Input"), | ||
"Input(Input) of PriorBoxOp should not be null."); | ||
PADDLE_ENFORCE(ctx->HasInput("Image"), | ||
"Input(Image) of PriorBoxOp should not be null."); | ||
|
||
auto image_dims = ctx->GetInputDim("Image"); | ||
auto input_dims = ctx->GetInputDim("Input"); | ||
PADDLE_ENFORCE(image_dims.size() == 4, "The layout of image is NCHW."); | ||
PADDLE_ENFORCE(input_dims.size() == 4, "The layout of input is NCHW."); | ||
|
||
PADDLE_ENFORCE_LT(input_dims[2], image_dims[2], | ||
"The height of input must smaller than image."); | ||
|
||
PADDLE_ENFORCE_LT(input_dims[3], image_dims[3], | ||
"The width of input must smaller than image."); | ||
|
||
auto min_sizes = ctx->Attrs().Get<std::vector<int>>("min_sizes"); | ||
auto max_sizes = ctx->Attrs().Get<std::vector<int>>("max_sizes"); | ||
auto variances = ctx->Attrs().Get<std::vector<float>>("variances"); | ||
auto aspect_ratios = ctx->Attrs().Get<std::vector<float>>("aspect_ratios"); | ||
bool flip = ctx->Attrs().Get<bool>("flip"); | ||
|
||
PADDLE_ENFORCE_GT(min_sizes.size(), 0, | ||
"Size of min_sizes must be at least 1."); | ||
for (size_t i = 0; i < min_sizes.size(); ++i) { | ||
PADDLE_ENFORCE_GT(min_sizes[i], 0, "min_sizes[%d] must be positive.", i); | ||
} | ||
|
||
std::vector<float> aspect_ratios_vec; | ||
ExpandAspectRatios(aspect_ratios, flip, aspect_ratios_vec); | ||
|
||
int num_priors = aspect_ratios_vec.size() * min_sizes.size(); | ||
if (max_sizes.size() > 0) { | ||
PADDLE_ENFORCE_EQ(max_sizes.size(), min_sizes.size(), | ||
"The number of min_size and max_size must be equal."); | ||
for (size_t i = 0; i < min_sizes.size(); ++i) { | ||
PADDLE_ENFORCE_GT(max_sizes[i], min_sizes[i], | ||
"max_size[%d] must be greater than min_size[%d].", i, | ||
i); | ||
num_priors += 1; | ||
} | ||
} | ||
|
||
PADDLE_ENFORCE_EQ(variances.size(), 4, "Must and only provide 4 variance."); | ||
for (size_t i = 0; i < variances.size(); ++i) { | ||
PADDLE_ENFORCE_GT(variances[i], 0.0, | ||
"variance[%d] must be greater than 0.", i); | ||
} | ||
|
||
const float step_h = ctx->Attrs().Get<float>("step_h"); | ||
PADDLE_ENFORCE_GT(step_h, 0.0, "step_h should be larger than 0."); | ||
const float step_w = ctx->Attrs().Get<float>("step_w"); | ||
PADDLE_ENFORCE_GT(step_w, 0.0, "step_w should be larger than 0."); | ||
|
||
std::vector<int64_t> dim_vec(4); | ||
dim_vec[0] = input_dims[2]; | ||
dim_vec[1] = input_dims[3]; | ||
dim_vec[2] = num_priors; | ||
dim_vec[3] = 4; | ||
ctx->SetOutputDim("Boxes", framework::make_ddim(dim_vec)); | ||
ctx->SetOutputDim("Variances", framework::make_ddim(dim_vec)); | ||
} | ||
}; | ||
|
||
class PriorBoxOpMaker : public framework::OpProtoAndCheckerMaker { | ||
public: | ||
PriorBoxOpMaker(OpProto* proto, OpAttrChecker* op_checker) | ||
: OpProtoAndCheckerMaker(proto, op_checker) { | ||
AddInput("Input", | ||
"(Tensor, default Tensor<float>), " | ||
"the input feature data of PriorBoxOp, The layout is NCHW."); | ||
AddInput("Image", | ||
"(Tensor, default Tensor<float>), " | ||
"the input image data of PriorBoxOp, The layout is NCHW."); | ||
AddOutput("Boxes", | ||
"(Tensor, default Tensor<float>), the output prior boxes of " | ||
"PriorBoxOp. The layout is [H, W, num_priors, 4]. " | ||
"H is the height of input, W is the width of input, num_priors " | ||
"is the box count of each position."); | ||
AddOutput("Variances", | ||
"(Tensor, default Tensor<float>), the expanded variances of " | ||
"PriorBoxOp. The layout is [H, W, num_priors, 4]. " | ||
"H is the height of input, W is the width of input, num_priors " | ||
"is the box count of each position."); | ||
AddAttr<std::vector<int>>("min_sizes", "(vector<int>) ", | ||
"List of min sizes of generated prior boxes."); | ||
AddAttr<std::vector<int>>("max_sizes", "(vector<int>) ", | ||
"List of max sizes of generated prior boxes."); | ||
AddAttr<std::vector<float>>( | ||
"aspect_ratios", "(vector<float>) ", | ||
"List of aspect ratios of generated prior boxes."); | ||
AddAttr<std::vector<float>>( | ||
"variances", "(vector<float>) ", | ||
"List of variances to be encoded in prior boxes."); | ||
AddAttr<bool>("flip", "(bool) ", "Whether to flip aspect ratios.") | ||
.SetDefault(true); | ||
AddAttr<bool>("clip", "(bool) ", "Whether to clip out-of-boundary boxes.") | ||
.SetDefault(true); | ||
AddAttr<float>("step_w", | ||
"Prior boxes step across width, 0 for auto calculation.") | ||
.SetDefault(0.0); | ||
AddAttr<float>("step_h", | ||
"Prior boxes step across height, 0 for auto calculation.") | ||
.SetDefault(0.0); | ||
AddAttr<float>("offset", | ||
"(float) " | ||
"Prior boxes center offset.") | ||
.SetDefault(0.5); | ||
AddComment(R"DOC( | ||
Prior box operator | ||
Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm. | ||
Each position of the input produce N prior boxes, N is determined by | ||
the count of min_sizes, max_sizes and aspect_ratios, The size of the | ||
box is in range(min_size, max_size) interval, which is generated in | ||
sequence according to the aspect_ratios. | ||
Please get more information from the following papers: | ||
https://arxiv.org/abs/1512.02325. | ||
)DOC"); | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
REGISTER_OP_WITHOUT_GRADIENT(prior_box, ops::PriorBoxOp, ops::PriorBoxOpMaker); | ||
REGISTER_OP_CPU_KERNEL( | ||
prior_box, ops::PriorBoxOpKernel<paddle::platform::CPUPlace, float>, | ||
ops::PriorBoxOpKernel<paddle::platform::CPUPlace, double>); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,188 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#pragma once | ||
#include "paddle/framework/op_registry.h" | ||
#include "paddle/operators/math/math_function.h" | ||
#include "paddle/platform/transform.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
inline void ExpandAspectRatios(const std::vector<float>& input_aspect_ratior, | ||
bool flip, | ||
std::vector<float>& output_aspect_ratior) { | ||
constexpr float epsilon = 1e-6; | ||
output_aspect_ratior.clear(); | ||
output_aspect_ratior.push_back(1.); | ||
for (size_t i = 0; i < input_aspect_ratior.size(); ++i) { | ||
float ar = input_aspect_ratior[i]; | ||
bool already_exist = false; | ||
for (size_t j = 0; j < output_aspect_ratior.size(); ++j) { | ||
if (fabs(ar - output_aspect_ratior[j]) < epsilon) { | ||
already_exist = true; | ||
break; | ||
} | ||
} | ||
if (!already_exist) { | ||
output_aspect_ratior.push_back(ar); | ||
if (flip) { | ||
output_aspect_ratior.push_back(1. / ar); | ||
} | ||
} | ||
} | ||
} | ||
|
||
template <typename T> | ||
struct ClipFunctor { | ||
HOSTDEVICE T operator()(T in) const { | ||
return std::min<T>(std::max<T>(in, 0.), 1.); | ||
} | ||
}; | ||
|
||
template <typename Place, typename T> | ||
class PriorBoxOpKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
auto* input = ctx.Input<paddle::framework::Tensor>("Input"); | ||
auto* image = ctx.Input<paddle::framework::Tensor>("Image"); | ||
auto* boxes = ctx.Output<paddle::framework::Tensor>("Boxes"); | ||
auto* vars = ctx.Output<paddle::framework::Tensor>("Variances"); | ||
|
||
auto min_sizes = ctx.Attr<std::vector<int>>("min_sizes"); | ||
auto max_sizes = ctx.Attr<std::vector<int>>("max_sizes"); | ||
auto input_aspect_ratio = ctx.Attr<std::vector<float>>("aspect_ratios"); | ||
auto variances = ctx.Attr<std::vector<float>>("variances"); | ||
auto flip = ctx.Attr<bool>("flip"); | ||
auto clip = ctx.Attr<bool>("clip"); | ||
|
||
std::vector<float> aspect_ratios; | ||
ExpandAspectRatios(input_aspect_ratio, flip, aspect_ratios); | ||
|
||
T step_w = static_cast<T>(ctx.Attr<float>("step_w")); | ||
T step_h = static_cast<T>(ctx.Attr<float>("step_h")); | ||
T offset = static_cast<T>(ctx.Attr<float>("offset")); | ||
|
||
auto img_width = image->dims()[3]; | ||
auto img_height = image->dims()[2]; | ||
|
||
auto feature_width = input->dims()[3]; | ||
auto feature_height = input->dims()[2]; | ||
|
||
T step_width, step_height; | ||
if (step_w == 0 || step_h == 0) { | ||
step_width = static_cast<T>(img_width) / feature_width; | ||
step_height = static_cast<T>(img_height) / feature_height; | ||
} else { | ||
step_width = step_w; | ||
step_height = step_h; | ||
} | ||
|
||
int num_priors = aspect_ratios.size() * min_sizes.size(); | ||
if (max_sizes.size() > 0) { | ||
num_priors += max_sizes.size(); | ||
} | ||
|
||
boxes->mutable_data<T>(ctx.GetPlace()); | ||
vars->mutable_data<T>(ctx.GetPlace()); | ||
|
||
auto e_boxes = framework::EigenTensor<T, 4>::From(*boxes); | ||
for (int h = 0; h < feature_height; ++h) { | ||
for (int w = 0; w < feature_width; ++w) { | ||
T center_x = (w + offset) * step_width; | ||
T center_y = (h + offset) * step_height; | ||
T box_width, box_height; | ||
int idx = 0; | ||
for (size_t s = 0; s < min_sizes.size(); ++s) { | ||
int min_size = min_sizes[s]; | ||
// first prior: aspect_ratio = 1, size = min_size | ||
box_width = box_height = min_size; | ||
// xmin | ||
e_boxes(h, w, idx, 0) = (center_x - box_width / 2.) / img_width; | ||
// ymin | ||
e_boxes(h, w, idx, 1) = (center_y - box_height / 2.) / img_height; | ||
// xmax | ||
e_boxes(h, w, idx, 2) = (center_x + box_width / 2.) / img_width; | ||
// ymax | ||
e_boxes(h, w, idx, 3) = (center_y + box_height / 2.) / img_height; | ||
|
||
idx++; | ||
if (max_sizes.size() > 0) { | ||
int max_size = max_sizes[s]; | ||
// second prior: aspect_ratio = 1, | ||
// size = sqrt(min_size * max_size) | ||
box_width = box_height = sqrt(min_size * max_size); | ||
// xmin | ||
e_boxes(h, w, idx, 0) = (center_x - box_width / 2.) / img_width; | ||
// ymin | ||
e_boxes(h, w, idx, 1) = (center_y - box_height / 2.) / img_height; | ||
// xmax | ||
e_boxes(h, w, idx, 2) = (center_x + box_width / 2.) / img_width; | ||
// ymax | ||
e_boxes(h, w, idx, 3) = (center_y + box_height / 2.) / img_height; | ||
idx++; | ||
} | ||
|
||
// rest of priors | ||
for (size_t r = 0; r < aspect_ratios.size(); ++r) { | ||
float ar = aspect_ratios[r]; | ||
if (fabs(ar - 1.) < 1e-6) { | ||
continue; | ||
} | ||
box_width = min_size * sqrt(ar); | ||
box_height = min_size / sqrt(ar); | ||
// xmin | ||
e_boxes(h, w, idx, 0) = (center_x - box_width / 2.) / img_width; | ||
// ymin | ||
e_boxes(h, w, idx, 1) = (center_y - box_height / 2.) / img_height; | ||
// xmax | ||
e_boxes(h, w, idx, 2) = (center_x + box_width / 2.) / img_width; | ||
// ymax | ||
e_boxes(h, w, idx, 3) = (center_y + box_height / 2.) / img_height; | ||
idx++; | ||
} | ||
} | ||
} | ||
} | ||
|
||
if (clip) { | ||
platform::Transform<platform::CPUDeviceContext> trans; | ||
ClipFunctor<T> clip_func; | ||
trans(ctx.template device_context<platform::CPUDeviceContext>(), | ||
boxes->data<T>(), boxes->data<T>() + boxes->numel(), | ||
boxes->data<T>(), clip_func); | ||
} | ||
|
||
framework::Tensor var_t; | ||
var_t.mutable_data<T>( | ||
framework::make_ddim({1, static_cast<int>(variances.size())}), | ||
ctx.GetPlace()); | ||
auto var_et = framework::EigenTensor<T, 2>::From(var_t); | ||
for (size_t i = 0; i < variances.size(); ++i) { | ||
var_et(0, i) = variances[i]; | ||
} | ||
|
||
int box_num = feature_height * feature_width * num_priors; | ||
auto var_dim = vars->dims(); | ||
vars->Resize({box_num, static_cast<int>(variances.size())}); | ||
|
||
auto e_vars = framework::EigenMatrix<T, Eigen::RowMajor>::From(*vars); | ||
e_vars = var_et.broadcast(Eigen::DSizes<int, 2>(box_num, 1)); | ||
|
||
vars->Resize(var_dim); | ||
} | ||
}; // namespace operators | ||
|
||
} // namespace operators | ||
} // namespace paddle |
Oops, something went wrong.