-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[AMP]fix embedding model weight type mismatch error (#53770)
* fix embedding model weight type mismatch error * Update fp16_utils.py --------- Co-authored-by: Zhang Ting <zhangting_2017@163.com>
- Loading branch information
1 parent
efd410c
commit 848deec
Showing
2 changed files
with
164 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,146 @@ | ||
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
|
||
import random | ||
import unittest | ||
|
||
import numpy as np | ||
from amp_base_models import AmpTestBase, _build_optimizer | ||
|
||
import paddle | ||
from paddle import nn | ||
|
||
paddle.enable_static() | ||
|
||
_fixed_param = np.random.random(size=[64, 64]).astype("float32") | ||
|
||
|
||
class SimpleUnittedEmbeddingNet(nn.Layer): | ||
def __init__(self): | ||
super().__init__() | ||
self.vocab_size = 64 | ||
self.hidden_size = 64 | ||
global _fixed_param | ||
|
||
self.param_attr = paddle.ParamAttr( | ||
initializer=paddle.nn.initializer.Assign(_fixed_param) | ||
) | ||
self.embedding = nn.Embedding( | ||
self.vocab_size, self.hidden_size, weight_attr=self.param_attr | ||
) | ||
self.linear = nn.Linear( | ||
in_features=self.hidden_size, | ||
out_features=self.vocab_size, | ||
weight_attr=self.param_attr, | ||
) | ||
|
||
def forward(self, x): | ||
out = self.embedding(x) | ||
scale = paddle.full(shape=[1], fill_value=2, dtype="int64") | ||
out = paddle.multiply(out, scale.astype("float32")) | ||
out = self.linear(out) | ||
out = nn.functional.dropout(out, p=0.2) | ||
return out | ||
|
||
|
||
def build_unitted_embedding_model( | ||
use_amp, | ||
amp_dtype="float16", | ||
amp_level="O1", | ||
use_promote=False, | ||
): | ||
main_program = paddle.static.Program() | ||
startup_program = paddle.static.Program() | ||
with paddle.utils.unique_name.guard(): | ||
with paddle.static.program_guard(main_program, startup_program): | ||
model = SimpleUnittedEmbeddingNet() | ||
x = paddle.static.data(name='x', shape=[None, 32], dtype='int64') | ||
out = model(x) | ||
loss = paddle.mean(out) | ||
if use_amp: | ||
amp_lists = paddle.static.amp.AutoMixedPrecisionLists( | ||
custom_white_list=["elementwise_mul"], | ||
custom_black_list=["reduce_mean"], | ||
dtype=amp_dtype, | ||
) | ||
else: | ||
amp_lists = None | ||
optimizer = _build_optimizer( | ||
use_amp, | ||
amp_dtype, | ||
amp_level, | ||
amp_lists, | ||
True, | ||
use_promote=use_promote, | ||
) | ||
optimizer.minimize(loss) | ||
|
||
feed_vars = [x] | ||
fetch_vars = [loss] | ||
return main_program, startup_program, optimizer, feed_vars, fetch_vars | ||
|
||
|
||
class TestUnittedEmbedding(AmpTestBase): | ||
def _generate_feed_x(self): | ||
seed = 0 | ||
paddle.seed(seed) | ||
np.random.seed(seed) | ||
random.seed(seed) | ||
|
||
x = np.random.randint(1, 64, size=[1, 32]).astype("int64") | ||
return x | ||
|
||
def test_compare_o1_and_o2_master_grad(self): | ||
def _run(place, exe, x_np, max_iters, level): | ||
( | ||
main_program, | ||
startup_program, | ||
optimizer, | ||
feed_vars, | ||
fetch_vars, | ||
) = build_unitted_embedding_model( | ||
True, | ||
"float16", | ||
level, | ||
) | ||
|
||
seed = 0 | ||
paddle.seed(seed) | ||
np.random.seed(seed) | ||
random.seed(seed) | ||
|
||
losses = self.run_program( | ||
main_program, | ||
startup_program, | ||
optimizer, | ||
feed_vars, | ||
fetch_vars, | ||
place, | ||
exe, | ||
x_np, | ||
max_iters, | ||
level, | ||
) | ||
return losses | ||
|
||
max_iters = 5 | ||
x = self._generate_feed_x() | ||
place = paddle.CUDAPlace(0) | ||
exe = paddle.static.Executor(place) | ||
losses_o2 = _run(place, exe, x, max_iters, 'O2') | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |