Skip to content

Commit

Permalink
Feature/enhance evaluator (#5824)
Browse files Browse the repository at this point in the history
* Stash

* Stash

* Polish Evaluator

* Merge code

* Revert
  • Loading branch information
reyoung authored Nov 27, 2017
1 parent 1f6002e commit a619695
Show file tree
Hide file tree
Showing 8 changed files with 144 additions and 213 deletions.
1 change: 0 additions & 1 deletion paddle/operators/math/selected_rows_functor.cu
Original file line number Diff line number Diff line change
Expand Up @@ -227,7 +227,6 @@ template struct SelectedRowsAddToTensor<platform::GPUPlace, float>;
template struct SelectedRowsAddToTensor<platform::GPUPlace, double>;
template struct SelectedRowsAddToTensor<platform::GPUPlace, int>;
template struct SelectedRowsAddToTensor<platform::GPUPlace, int64_t>;

} // namespace math
} // namespace operators
} // namespace paddle
247 changes: 96 additions & 151 deletions python/paddle/v2/fluid/evaluator.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,14 @@
import numpy as np
from paddle.v2.fluid.framework import Program, g_main_program, unique_name, Variable
import paddle.v2.fluid.core as core

import paddle.v2.fluid.layers as layers
from paddle.v2.fluid.framework import Program, unique_name, \
Variable
from paddle.v2.fluid.layer_helper import LayerHelper

def _clone_var_in_block_(block, var):
__all__ = ['Accuracy']


def _clone_var_(block, var):
assert isinstance(var, Variable)
return block.create_var(
name=var.name,
Expand All @@ -16,175 +21,115 @@ def _clone_var_in_block_(block, var):

class Evaluator(object):
"""
Evalutor Base class.
create metric states
add mini-batch evaluator caculate operator
add increment operator to accumulate the metric states
Base Class for all evaluators
Args:
name(str): The name of evaluator. such as, "accuracy". Used for generate
temporary variable name.
main_program(Program, optional): The evaluator should be added to this
main_program. Default g_main_program
startup_program(Program, optional):The parameter should be added to this
startup_program. Default g_startup_program
Attributes:
states(list): The list of state variables. states will be reset to zero
when `reset` is invoked.
metrics(list): The list of metrics variables. They will be calculate
every mini-batch
"""

def __init__(self, name, **kwargs):
self.states = []
self.metrics = []
self.helper = LayerHelper(name, **kwargs)

def reset(self, executor, reset_program=None):
"""
init the global states
reset metric states at the begin of each pass/user specified batch
"""
self._states = {}
if kwargs.has_key("main_program"):
self._main_program = kwargs.get("main_program")
else:
self._main_program = g_main_program
if reset_program is None:
reset_program = Program()

for var in self.states:
assert isinstance(var, Variable)
g_var = _clone_var_(reset_program.current_block(), var)
layers.fill_constant(
shape=g_var.shape,
value=0.0,
dtype=g_var.dtype,
out=g_var,
main_program=reset_program)

def states(self):
return self._states
executor.run(reset_program)

def _update_ops(self, *args, **kwargs):
def eval(self, executor, eval_program=None):
"""
append update ops to the global states
Evaluate the statistics merged by multiple mini-batches.
"""
raise NotImplementedError()

def reset(self, executor, reset_program=None):
def create_state(self, suffix, dtype, shape):
"""
Clear metric states at the begin of each pass/user specified batch
"""
if reset_program == None:
reset_program = Program()
else:
reset_program = program
block = reset_program.global_block()
for k, var in self._states.iteritems():
g_var = _clone_var_in_block_(block, var)
zeros = block.create_var(dtype="float32", persistable=True)
block.append_op(
type="fill_constant",
outputs={"Out": [zeros]},
attrs={
"shape": g_var.shape,
"value": .0,
"dtype": 5,
})
block.append_op(
type="scale", inputs={"X": zeros}, outputs={"Out": g_var})
executor.run(reset_program, fetch_list=self._states.values())
Create state variable.
NOTE: It is not a public API.
Args:
suffix(str): the state suffix.
dtype(str|core.DataType): the state data type
shape(tuple|list): the shape of state
Returns: State variable
def eval(self, executor, eval_program=None):
"""
Merge the mini-batch statistics to form the evaluation result for multiple mini-batches.
"""
raise NotImplementedError()
state = self.helper.create_variable(
name="_".join([unique_name(self.helper.name), suffix]),
persistable=True,
dtype=dtype,
shape=shape)
self.states.append(state)
return state


class Accuracy(Evaluator):
"""
Accuracy need two state variable Total, Correct
Average Accuracy for multiple mini-batches.
"""

def __init__(self, *args, **kwargs):
def __init__(self, input, label, k=1, **kwargs):
super(Accuracy, self).__init__("accuracy", **kwargs)
block = self._main_program.global_block()
g_total = block.create_var(
name=unique_name("Total"),
persistable=True,
dtype="int64",
shape=[1])
g_correct = block.create_var(
name=unique_name("Correct"),
persistable=True,
dtype="int64",
shape=[1])
self._states["Total"] = g_total
self._states["Correct"] = g_correct

def _update_ops(self, input, label, k=1, **kwargs):
block = self._main_program.global_block()
topk_out = block.create_var(dtype=input.dtype)
topk_indices = block.create_var(dtype="int64")
block.append_op(
type="top_k",
inputs={"X": [input]},
outputs={"Out": [topk_out],
"Indices": [topk_indices]},
attrs={"k": k})
acc_out = block.create_var(dtype=kwargs.get("out_dtype", "float32"))
correct = block.create_var(dtype="int64", persistable=True)
total = block.create_var(dtype="int64", persistable=True)
block.append_op(
type="accuracy",
inputs={
"Out": [topk_out],
"Indices": [topk_indices],
"Label": [label]
},
outputs={
"Accuracy": [acc_out],
"Correct": [correct],
"Total": [total],
})

block.append_op(
type="cast",
inputs={"X": [self._states["Total"]]},
outputs={"Out": [self._states["Total"]]},
attrs={
"in_dtype": 5, # float32
"out_dtype": 2, # int32
})
block.append_op(
type="cast",
inputs={"X": [self._states["Correct"]]},
outputs={"Out": [self._states["Correct"]]},
attrs={
"in_dtype": 5,
"out_dtype": 2,
})

block.append_op(
type="elementwise_add",
inputs={"X": [self._states["Total"]],
"Y": [total]},
outputs={"Out": [self._states["Total"]]})
block.append_op(
type="elementwise_add",
inputs={"X": [self._states["Correct"]],
"Y": [correct]},
outputs={"Out": [self._states["Correct"]]})

return acc_out
main_program = self.helper.main_program
if main_program.current_block().idx != 0:
raise ValueError("You can only invoke Evaluator in root block")

self.total = self.create_state(dtype='int64', shape=[1], suffix='total')
self.correct = self.create_state(
dtype='int64', shape=[1], suffix='correct')
kwargs = {'main_program': main_program}
total = self.helper.create_tmp_variable(dtype='int')
correct = self.helper.create_tmp_variable(dtype='int')
acc = layers.accuracy(
input=input,
label=label,
k=k,
total=total,
correct=correct,
**kwargs)
total = layers.cast(x=total, dtype='int64', **kwargs)
correct = layers.cast(x=correct, dtype='int64', **kwargs)
layers.sums(input=[self.total, total], out=self.total, **kwargs)
layers.sums(input=[self.correct, correct], out=self.correct, **kwargs)

self.metrics.append(acc)

def eval(self, executor, eval_program=None):
if eval_program != None:
eval_program = eval_program
else:
if eval_program is None:
eval_program = Program()
block = eval_program.global_block()
eval_out = block.create_var(dtype=self._states["Total"].dtype)
e_total = _clone_var_in_block_(block, self._states["Total"])
e_correct = _clone_var_in_block_(block, self._states["Correct"])
block.append_op(
type="cast",
inputs={"X": [e_total]},
outputs={"Out": [e_total]},
attrs={
"in_dtype": 2, # int32
"out_dtype": 5, # float32
})
block.append_op(
type="cast",
inputs={"X": [e_correct]},
outputs={"Out": [e_correct]},
attrs={
"in_dtype": 2,
"out_dtype": 5,
})
block.append_op(
type="elementwise_div",
inputs={"X": e_correct,
"Y": e_total},
outputs={"Out": eval_out})
out = executor.run(eval_program, fetch_list=[eval_out])
return np.array(out[0])


def accuracy(*args, **kwargs):
cls = Accuracy(*args, **kwargs)
out = cls._update_ops(*args, **kwargs)
return cls, out
block = eval_program.current_block()
kwargs = {'main_program': eval_program}
total = _clone_var_(block, self.total)
correct = _clone_var_(block, self.correct)
total = layers.cast(total, dtype='float32', **kwargs)
correct = layers.cast(correct, dtype='float32', **kwargs)
out = layers.elementwise_div(x=correct, y=total, **kwargs)
return np.array(executor.run(eval_program, fetch_list=[out])[0])
38 changes: 30 additions & 8 deletions python/paddle/v2/fluid/layers.py
Original file line number Diff line number Diff line change
Expand Up @@ -418,6 +418,7 @@ def func(**kwargs):
_create_op_func_('mean')
_create_op_func_('mul')
_create_op_func_('elementwise_add')
_create_op_func_('elementwise_div')
_create_op_func_('dropout')
_create_op_func_('reshape')
_create_op_func_('sigmoid')
Expand Down Expand Up @@ -457,13 +458,14 @@ def concat(input, axis, main_program=None, startup_program=None):
return out


def sums(input, main_program=None, startup_program=None):
def sums(input, out=None, main_program=None, startup_program=None):
"""
This function takes in the input and performs the sum operation on it
and returns that as the output.
"""
helper = LayerHelper('sum', **locals())
out = helper.create_tmp_variable(dtype=helper.input_dtype())
if out is None:
out = helper.create_tmp_variable(dtype=helper.input_dtype())
helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
return out

Expand Down Expand Up @@ -606,7 +608,7 @@ def square_error_cost(input, label, **kwargs):
return square_out


def accuracy(input, label, k=1, **kwargs):
def accuracy(input, label, k=1, correct=None, total=None, **kwargs):
"""
This function computes the accuracy using the input and label.
The output is the top_k inputs and their indices.
Expand All @@ -620,10 +622,11 @@ def accuracy(input, label, k=1, **kwargs):
outputs={"Out": [topk_out],
"Indices": [topk_indices]},
attrs={"k": k})
acc_out_dtype = kwargs.get("out_dtype", "float32")
acc_out = helper.create_tmp_variable(dtype="float32")
correct = helper.create_tmp_variable(dtype="int64")
total = helper.create_tmp_variable(dtype="int64")
if correct is None:
correct = helper.create_tmp_variable(dtype="int64")
if total is None:
total = helper.create_tmp_variable(dtype="int64")
helper.append_op(
type="accuracy",
inputs={
Expand Down Expand Up @@ -1355,6 +1358,19 @@ def lod_rank_table(x, level=0, main_program=None):
return table


def topk(input, k, main_program=None, startup_program=None):
helper = LayerHelper('topk', **locals())
topk_out = helper.create_tmp_variable(dtype=input.data_type)
topk_indices = helper.create_tmp_variable(dtype='int64')
helper.append_op(
type='top_k',
inputs={'X': [input]},
outputs={'Out': [topk_out],
'Indices': [topk_indices]},
attrs={'k': k})
return topk_out, topk_indices


def lod_tensor_to_array(x, table, main_program=None):
"""
This function creates an operator to convert an LOD_Tensor to
Expand Down Expand Up @@ -1388,14 +1404,20 @@ def array_to_lod_tensor(x, table, main_program=None):
return tmp


def fill_constant(shape, dtype, value, main_program=None, startup_program=None):
def fill_constant(shape,
dtype,
value,
out=None,
main_program=None,
startup_program=None):
"""
This function creates a tensor , with shape as mentioned in the input and
specified dtype and fills this up with a constant value that
comes in the input. It also sets the stop_gradient to be True.
"""
helper = LayerHelper("fill_constant", **locals())
out = helper.create_tmp_variable(dtype=dtype)
if out is None:
out = helper.create_tmp_variable(dtype=dtype)
helper.append_op(
type='fill_constant',
inputs={},
Expand Down
Loading

0 comments on commit a619695

Please sign in to comment.