Skip to content

Commit

Permalink
Merge pull request #3367 from lcy-seso/add_sequence_slice_layer
Browse files Browse the repository at this point in the history
Add a sequence slice layer.
  • Loading branch information
lcy-seso authored Aug 24, 2017
2 parents 6bbc9a5 + 377401f commit ab6b3c4
Show file tree
Hide file tree
Showing 14 changed files with 718 additions and 40 deletions.
5 changes: 5 additions & 0 deletions doc/api/v2/config/layer.rst
Original file line number Diff line number Diff line change
Expand Up @@ -257,6 +257,11 @@ seq_concat
.. autoclass:: paddle.v2.layer.seq_concat
:noindex:

seq_slice
---------
.. autoclass:: paddle.v2.layer.seq_slice
:noindex:

kmax_sequence_score
-------------------
.. autoclass:: paddle.v2.layer.kmax_sequence_score
Expand Down
19 changes: 14 additions & 5 deletions paddle/gserver/layers/KmaxSeqScoreLayer.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -80,13 +80,14 @@ void KmaxSeqScoreLayer::forward(PassType passType) {
<< "input of " << getName()
<< " must be a sequence or a nested sequence.";
CHECK_EQ(input.value->getWidth(), 1UL)
<< "input of " << getName()
<< " is score over a sequence or a nested sequence, so its width "
<< " must be 1.";
<< "input of " << getName() << " are scores over a sequence or "
<< "a nested sequence, so its width must be 1.";

if (useGpu_) {
// this Layer runs only in CPU, if the model is runing on GPU,
// then copy the input to this layer from GPU to CPU.
/*
* currently, this Layer only runs in CPU, if the other part of the model is
* runing on GPU, then copy the input to this layer from GPU to CPU.
*/
Matrix::resizeOrCreate(scores_,
inputScore->getHeight(),
1,
Expand All @@ -97,6 +98,14 @@ void KmaxSeqScoreLayer::forward(PassType passType) {
scores_ = inputScore;
}

/*
* TODO(caoying)
* In PaddePaddle, currently all matrices are real number types,
* but output of this layer which is some selected indices of the give
* sequence are actually filled with int types so that storing int types
* information in a real number matrix is dangerous, since real numbers will
* be convered to int types.
*/
Matrix::resizeOrCreate(
output_.value,
input.hasSubseq() ? input.getNumSubSequences() : input.getNumSequences(),
Expand Down
220 changes: 220 additions & 0 deletions paddle/gserver/layers/SequenceSliceLayer.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,220 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Layer.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/Vector.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"

namespace paddle {

class SequenceSliceLayer : public Layer {
public:
explicit SequenceSliceLayer(const LayerConfig& config) : Layer(config) {}

bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;

void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;

private:
/*
* TODO(caoying)
* In PaddePaddle, currently all matrices are real number types,
* but the second and the (optional) third input which are some
* selected indices of the give sequence to trim the sequence, are actually
* filled with int types so that storing int types information in real number
* matrices is very dangerous, since real numbers will be convered to int
* types. If a user fills this matrix himself, invalid data may occor.
*/

MatrixPtr startIdsOnCpu_;
MatrixPtr endIdsOnCpu_;

std::vector<int> selectedRows_;
IVectorPtr rowIndice_;
std::vector<std::vector<int>> inputSeqInfoVec_;
std::vector<int> outSubSeqStartPos_;
std::vector<int> outSeqStartPos_;

void checkInputs();
void copySliceIdsToCpu();
void calSelectedRows(const MatrixPtr starts, const MatrixPtr ends);
};

REGISTER_LAYER(seq_slice, SequenceSliceLayer);

bool SequenceSliceLayer::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
/* Initialize the basic parent class */
Layer::init(layerMap, parameterMap);
CHECK_GE(inputLayers_.size(), 2U);
CHECK_LE(inputLayers_.size(), 3U);

setNeedSequenceInfo(false);
return true;
}

void SequenceSliceLayer::checkInputs() {
const Argument& inputSeq = getInput(0);
CHECK(inputSeq.hasSeq()) << "The first input of sequence slice layer "
<< "must be a sequence.";
const MatrixPtr indices1 = getInputValue(1);
CHECK_EQ(static_cast<size_t>(indices1->getHeight()),
inputSeq.hasSubseq() ? inputSeq.getNumSubSequences()
: inputSeq.getNumSequences())
<< "Height of the second input should be equal to number of sequence "
<< "in the first input.";
if (inputLayers_.size() == 3) {
const MatrixPtr indices2 = getInputValue(2);
CHECK_EQ(indices2->getHeight(), indices1->getHeight())
<< "start indices and end indices should have the same height.";
CHECK_EQ(indices2->getWidth(), indices1->getWidth())
<< "start indices and end indices should have the same Width.";
}
}

void SequenceSliceLayer::copySliceIdsToCpu() {
const MatrixPtr indices1 = getInputValue(1);
if (inputLayers_.size() == 2U) {
if (config_.select_first()) {
Matrix::resizeOrCreate(startIdsOnCpu_,
indices1->getHeight(),
indices1->getWidth(),
false /* trans */,
false /* useGpu */);
startIdsOnCpu_->copyFrom(*indices1);
endIdsOnCpu_ = nullptr;
} else {
Matrix::resizeOrCreate(endIdsOnCpu_,
indices1->getHeight(),
indices1->getWidth(),
false /* trans */,
false /* useGpu */);
endIdsOnCpu_->copyFrom(*indices1);
startIdsOnCpu_ = nullptr;
}
} else if (inputLayers_.size() == 3U) {
Matrix::resizeOrCreate(startIdsOnCpu_,
indices1->getHeight(),
indices1->getWidth(),
false /* trans */,
false /* useGpu */);
startIdsOnCpu_->copyFrom(*indices1);

const MatrixPtr indices2 = getInputValue(2);
Matrix::resizeOrCreate(endIdsOnCpu_,
indices2->getHeight(),
indices2->getWidth(),
false /* trans */,
false /* useGpu */);
endIdsOnCpu_->copyFrom(*indices2);
}
}

void SequenceSliceLayer::calSelectedRows(const MatrixPtr starts,
const MatrixPtr ends) {
CHECK(starts || ends) << "At least one of the start or end indices "
<< "should be given.";

outSeqStartPos_.resize(1, 0);
outSubSeqStartPos_.resize(1, 0);
selectedRows_.clear();

size_t beamSize = starts ? starts->getWidth() : ends->getWidth();
size_t rowIdx = 0;
for (size_t i = 0; i < inputSeqInfoVec_.size(); ++i) {
for (size_t j = 0; j < inputSeqInfoVec_[i].size() - 1; ++j) {
for (size_t k = 0; k < beamSize; ++k) {
if (starts && starts->getElement(rowIdx, k) == -1.) break;
if (ends && ends->getElement(rowIdx, k) == -1.) break;

int begPos = inputSeqInfoVec_[i][j];
if (starts) begPos += starts->getElement(rowIdx, k);

int endPos = inputSeqInfoVec_[i][j + 1] - 1;
if (ends) endPos = inputSeqInfoVec_[i][j] + ends->getElement(rowIdx, k);

int seqLen = endPos - begPos + 1;
CHECK_GT(seqLen, 0U);
for (int m = begPos; m <= endPos; ++m) selectedRows_.push_back(m);
inputSeqInfoVec_.size() > 1
? outSubSeqStartPos_.push_back(outSubSeqStartPos_.back() + seqLen)
: outSeqStartPos_.push_back(outSeqStartPos_.back() + seqLen);
}
rowIdx++;
}
if (inputSeqInfoVec_.size() > 1)
outSeqStartPos_.push_back(outSubSeqStartPos_.back());
}

if (useGpu_) {
rowIndice_ = IVector::create(selectedRows_.size(), useGpu_);
rowIndice_->copyFrom(selectedRows_.data(), selectedRows_.size());
} else {
rowIndice_ =
IVector::create(selectedRows_.data(), selectedRows_.size(), useGpu_);
}

// create the sequence information for the output.
ICpuGpuVector::resizeOrCreate(
output_.sequenceStartPositions, outSeqStartPos_.size(), false);
output_.sequenceStartPositions->copyFrom(
outSeqStartPos_.data(), outSeqStartPos_.size(), false);

if (inputSeqInfoVec_.size() > 1) {
ICpuGpuVector::resizeOrCreate(
output_.subSequenceStartPositions, outSubSeqStartPos_.size(), false);
output_.subSequenceStartPositions->copyFrom(
outSubSeqStartPos_.data(), outSubSeqStartPos_.size(), false);
}
}

void SequenceSliceLayer::forward(PassType passType) {
Layer::forward(passType);
checkInputs();

const Argument& inputSeq = getInput(0);
inputSeqInfoVec_.clear();
Argument::reorganizeSeqInfo(inputSeq.sequenceStartPositions,
inputSeq.subSequenceStartPositions,
inputSeqInfoVec_);
if (!useGpu_) {
if (inputLayers_.size() == 2U) {
startIdsOnCpu_ = config_.select_first() ? getInputValue(1) : nullptr;
endIdsOnCpu_ = config_.select_first() ? nullptr : getInputValue(1);
} else if (inputLayers_.size() == 3U) {
startIdsOnCpu_ = getInputValue(1);
endIdsOnCpu_ = getInputValue(2);
}
} else
copySliceIdsToCpu();

// calculate the selected row indices in a batch,
// and build the output sequence information.
calSelectedRows(startIdsOnCpu_ ? startIdsOnCpu_ : nullptr,
endIdsOnCpu_ ? endIdsOnCpu_ : nullptr);

resetOutput(selectedRows_.size(), getSize());

getOutputValue()->selectRows(*getInputValue(0), *rowIndice_);
}

void SequenceSliceLayer::backward(const UpdateCallback& callback) {
getOutputGrad()->addToRows(*getInputGrad(0), *rowIndice_);
}

} // namespace paddle
31 changes: 21 additions & 10 deletions paddle/gserver/layers/SubNestedSequenceLayer.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -52,23 +52,34 @@ class SubNestedSequenceLayer : public Layer {
* ]
*
* ths output is saved to private member rowIndice_;
* [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
* 16,17,18,19,20,21,22,23,24,25,26,27]
* [0,1,2,3,4,5,6,7,8,9,15,16,17,18,19,20,21,23,24,25,26,27]
*/

void calSelectedCols(const MatrixPtr selectedIndices,
void calSelectedRows(const MatrixPtr selectedIndices,
const std::vector<std::vector<int>>& inputSeqInfo);

// if the second input of this layer is on GPU memory, copy it to CPU memory.
/*
* TODO(caoying)
* In PaddePaddle, currently all matrices are real number types,
* but the second is some selected indices of the give sequence to trim
* the nested sequence, are actually filled with int types so that storing
* int types information in real number matrices is very dangerous, since
* real numbers will be convered to int types. If a user fills this matrix
* himself, invalid data may occor.
*
* if the second input of this layer is on GPU memory, copy it to CPU memory.
*/
MatrixPtr selIdsCpu_;

// reorganized sequenceStartPositions and subSequenceStartPositions
// into a 2d vector to facilitate the sequence selection process.
/*
* reorganize sequenceStartPositions and subSequenceStartPositions
* into a 2d vector to facilitate the sequence selection process.
*/
std::vector<std::vector<int>> inputSeqInfoVec_;

// the final selected row indices in a batch,
// rowIdx_ and selectedRows_ actually share a same memory.
/* store the final selected row indices in a batch */
IVectorPtr rowIndice_;
/* rowIndice_ and selectedRows_ actually share a same memory. */
std::vector<int> selectedRows_;
};

Expand All @@ -83,7 +94,7 @@ bool SubNestedSequenceLayer::init(const LayerMap& layerMap,
return true;
}

void SubNestedSequenceLayer::calSelectedCols(
void SubNestedSequenceLayer::calSelectedRows(
const MatrixPtr selectedIndices,
const std::vector<std::vector<int>>& inputSeqInfo) {
selectedRows_.clear();
Expand Down Expand Up @@ -160,7 +171,7 @@ void SubNestedSequenceLayer::forward(PassType passType) {
Argument::reorganizeSeqInfo(inputSeq.sequenceStartPositions,
inputSeq.subSequenceStartPositions,
inputSeqInfoVec_);
calSelectedCols(selIdsCpu_, inputSeqInfoVec_);
calSelectedRows(selIdsCpu_, inputSeqInfoVec_);

resetOutput(selectedRows_.size(), getSize());
getOutputValue()->selectRows(*getInputValue(0), *rowIndice_);
Expand Down
6 changes: 6 additions & 0 deletions paddle/gserver/tests/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,12 @@ add_unittest_without_exec(test_CRFLayerGrad
add_test(NAME test_CRFLayerGrad
COMMAND test_CRFLayerGrad)

################ test_SeqSliceLayerGrad ####################
add_unittest_without_exec(test_SeqSliceLayerGrad
test_SeqSliceLayerGrad.cpp
LayerGradUtil.cpp)
add_test(NAME test_SeqSliceLayerGrad
COMMAND test_SeqSliceLayerGrad)

add_unittest_without_exec(test_ActivationGrad
test_ActivationGrad.cpp
Expand Down
Loading

0 comments on commit ab6b3c4

Please sign in to comment.