-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Paddle CI_MAC
committed
Mar 5, 2021
1 parent
0310945
commit b6b3242
Showing
3 changed files
with
274 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,121 @@ | ||
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#ifdef PADDLE_WITH_ASCEND_CL | ||
#include <memory> | ||
#include <string> | ||
#include <iostream> | ||
|
||
#include "paddle/fluid/operators/npu_op_runner.h" | ||
#include "paddle/fluid/framework/op_registry.h" | ||
#include "paddle/fluid/operators/expand_op.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
template <typename DeviceContext, typename T> | ||
class TransposeNPUKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
auto* x = ctx.Input<framework::LoDTensor>("X"); | ||
auto* out = ctx.Output<framework::LoDTensor>("Out"); | ||
std::vector<int> axis = ctx.Attr<std::vector<int>>("axis"); | ||
framework::NPUAttributeMap attr_input = {{"perm", axis}}; | ||
for (auto& v: axis){ | ||
std::cout <<"axis" << v <<std::endl; | ||
} | ||
std::vector<T> vec; | ||
TensorToVector(*x, ctx.device_context(), &vec); | ||
for (auto& v : vec){ | ||
std::cout <<"x "<< v<<std::endl; | ||
} | ||
TensorToVector(*out, ctx.device_context(), &vec); | ||
for (auto& v : vec){ | ||
std::cout <<"out "<< v<<std::endl; | ||
} | ||
auto runner = NpuOpRunner("TransposeD", {*x}, {*out}, attr_input); | ||
auto stream = ctx.template device_context<paddle::platform::NPUDeviceContext>().stream(); | ||
runner.Run(stream); | ||
//ctx.device_context().Wait(); | ||
TensorToVector(*out, ctx.device_context(), &vec); | ||
for (auto& v : vec){ | ||
std::cout <<"out out"<< v<<std::endl; | ||
} | ||
TensorToVector(*x, ctx.device_context(), &vec); | ||
for (auto& v : vec){ | ||
std::cout <<"out x"<< v<<std::endl; | ||
} | ||
|
||
} | ||
}; | ||
|
||
template <typename T> | ||
class TransposeGradNPUKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext &ctx) const override { | ||
std::cout <<" enter grad kernel "<<std::endl; | ||
auto* out_grad = ctx.Input<framework::LoDTensor>(framework::GradVarName("Out")); | ||
auto* x_grad = ctx.Output<framework::LoDTensor>(framework::GradVarName("X")); | ||
std::vector<int> axis = ctx.Attr<std::vector<int>>("axis"); | ||
std::vector<int> reversed_axis(axis); | ||
for (auto& v : axis){ | ||
std::cout <<"axis grad "<< v<<std::endl; | ||
} | ||
|
||
for (size_t i = 0; i < axis.size(); i++) { | ||
reversed_axis[axis[i]] = i; | ||
} | ||
|
||
std::vector<T> vec; | ||
TensorToVector(*x_grad, ctx.device_context(), &vec); | ||
for (auto& v : vec){ | ||
std::cout <<"x grad "<< v<<std::endl; | ||
} | ||
TensorToVector(*out_grad, ctx.device_context(), &vec); | ||
for (auto& v : vec){ | ||
std::cout <<"out grad "<< v<<std::endl; | ||
} | ||
for (auto& v : reversed_axis){ | ||
std::cout <<"axis "<< v<<std::endl; | ||
} | ||
|
||
framework::NPUAttributeMap attr_input = {{"perm", reversed_axis}}; | ||
auto runner = NpuOpRunner("TransposeD", {*out_grad}, {*x_grad}, attr_input); | ||
auto stream = ctx.template device_context<paddle::platform::NPUDeviceContext>().stream(); | ||
runner.Run(stream); | ||
} | ||
}; | ||
|
||
} | ||
} | ||
|
||
namespace ops = paddle::operators; | ||
|
||
REGISTER_OP_NPU_KERNEL(transpose, | ||
ops::TransposeNPUKernel<paddle::platform::NPUDeviceContext, float>, | ||
ops::TransposeNPUKernel<paddle::platform::NPUDeviceContext, paddle::platform::float16>, | ||
ops::TransposeNPUKernel<paddle::platform::NPUDeviceContext, int>, | ||
ops::TransposeNPUKernel<paddle::platform::NPUDeviceContext, uint8_t>, | ||
ops::TransposeNPUKernel<paddle::platform::NPUDeviceContext, int8_t> | ||
); | ||
|
||
REGISTER_OP_NPU_KERNEL(transpose_grad, | ||
ops::TransposeGradNPUKernel<float>, | ||
ops::TransposeGradNPUKernel<paddle::platform::float16>, | ||
ops::TransposeGradNPUKernel<int>, | ||
ops::TransposeGradNPUKernel<uint8_t>, | ||
ops::TransposeGradNPUKernel<int8_t> | ||
); | ||
|
||
|
||
|
||
#endif | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,149 @@ | ||
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#ifndef _WIN32 | ||
#include <unistd.h> | ||
#endif | ||
|
||
#include <string> | ||
#include <cmath> | ||
#include <thread> // NOLINT | ||
#include <vector> | ||
#include <numeric> | ||
#include <iostream> | ||
|
||
#include "gtest/gtest.h" | ||
#include "paddle/fluid/framework/op_registry.h" | ||
#include "paddle/fluid/framework/operator.h" | ||
#include "paddle/fluid/framework/program_desc.h" | ||
#include "paddle/fluid/operators/dropout_op.h" | ||
#include "paddle/fluid/operators/math/math_function.h" | ||
#include "paddle/fluid/string/printf.h" | ||
|
||
namespace f = paddle::framework; | ||
namespace p = paddle::platform; | ||
namespace m = paddle::operators::math; | ||
|
||
USE_OP(transpose); | ||
USE_OP_DEVICE_KERNEL(transpose, NPU); | ||
|
||
|
||
template <typename T> | ||
void Compare(f::Scope* scope, const p::DeviceContext& ctx) { | ||
// init | ||
auto x = scope->Var("X"); | ||
auto out = scope->Var("Out"); | ||
auto* x_t = x->GetMutable<f::LoDTensor>(); | ||
auto* out_t = out->GetMutable<f::LoDTensor>(); | ||
auto place = ctx.GetPlace(); | ||
|
||
int dim0=2; | ||
int dim1=2; | ||
TensorFromVector(std::vector<T>({0,1,2,3}), ctx, x_t); | ||
ctx.Wait(); | ||
x_t->Resize({dim0, dim1}); | ||
out_t->Resize({dim0, dim1}); | ||
ctx.Wait(); | ||
out_t->mutable_data<T>(place); | ||
ctx.Wait(); | ||
|
||
f::AttributeMap attrs = { | ||
{"axis", std::vector<int>({1, 0})}, | ||
{"data_format", std::string("AnyLayout")} | ||
}; | ||
auto op = f::OpRegistry::CreateOp("transpose", {{"X", {"X"}}}, | ||
{{"Out", {"Out"}}}, attrs); | ||
ctx.Wait(); | ||
op->Run(*scope, place); | ||
ctx.Wait(); | ||
std::vector<T> out_v; | ||
TensorToVector(*out_t, ctx, &out_v); | ||
ctx.Wait(); | ||
|
||
EXPECT_EQ(out_t->numel(), dim0 * dim1); | ||
EXPECT_EQ(out_v[0], 0); | ||
EXPECT_EQ(out_v[1], 2); | ||
EXPECT_EQ(out_v[2], 1); | ||
EXPECT_EQ(out_v[3], 3); | ||
} | ||
|
||
|
||
template <typename T> | ||
void CompareGrad(f::Scope* scope, const p::DeviceContext& ctx) { | ||
// init | ||
std::cout<<"run grad test"<<std::endl; | ||
auto x = scope->Var("X"); | ||
auto x_grad = scope->Var("X@GRAD"); | ||
auto out = scope->Var("Out"); | ||
auto out_grad = scope->Var("Out@GRAD"); | ||
|
||
auto* x_grad_t = x_grad->GetMutable<f::LoDTensor>(); | ||
auto* x_t = x->GetMutable<f::LoDTensor>(); | ||
auto* out_grad_t = out_grad->GetMutable<f::LoDTensor>(); | ||
auto* out_t = out->GetMutable<f::LoDTensor>(); | ||
int dim0=2; | ||
int dim1=2; | ||
auto place = ctx.GetPlace(); | ||
|
||
std::cout<<"build up tensor"<<std::endl; | ||
TensorFromVector(std::vector<T>({0,1,2,3}), ctx, out_grad_t); | ||
TensorFromVector(std::vector<T>({0,1,2,3}), ctx, x_t); | ||
ctx.Wait(); | ||
x_grad_t->Resize({dim0, dim1}); | ||
x_t->Resize({dim0, dim1}); | ||
out_grad_t->Resize({dim0, dim1}); | ||
out_t->Resize({dim0, dim1}); | ||
|
||
//out_grad_t->mutable_data<T>(place); | ||
x_grad_t->mutable_data<T>(place); | ||
out_t->mutable_data<T>(place); | ||
ctx.Wait(); | ||
|
||
std::cout<<"build op"<<std::endl; | ||
f::AttributeMap attrs = { | ||
{"axis", std::vector<int>({1, 0})}, | ||
{"data_format", std::string("AnyLayout")} | ||
}; | ||
/* | ||
{"mkldnn_data_type", "float32"}, | ||
{"use_mkldnn", false}, | ||
{"use_quantizer", false}, | ||
*/ | ||
auto op = f::OpRegistry::CreateOp("transpose_grad", {{"Out@GRAD", {"Out@GRAD"}}, {"X", {"X"}}, {"Out", {"Out"}}}, | ||
{{"X@GRAD", {"X@GRAD"}}}, attrs); | ||
std::cout<<"run op"<<std::endl; | ||
op->Run(*scope, place); | ||
ctx.Wait(); | ||
std::cout<<"build res"<<std::endl; | ||
std::vector<T> out_v; | ||
TensorToVector(*x_grad_t, ctx, &out_v); | ||
ctx.Wait(); | ||
|
||
EXPECT_EQ(x_grad_t->numel(), dim0 * dim1); | ||
EXPECT_EQ(out_v[0], 0); | ||
EXPECT_EQ(out_v[1], 2); | ||
EXPECT_EQ(out_v[2], 1); | ||
EXPECT_EQ(out_v[3], 3); | ||
} | ||
|
||
|
||
TEST(transpose, NPU_fp32) { | ||
f::Scope scope; | ||
p::NPUDeviceContext ctx(p::NPUPlace(0)); | ||
Compare<float>(&scope, ctx); | ||
} | ||
|
||
TEST(transpose_grad, NPU_fp32) { | ||
f::Scope scope; | ||
p::NPUDeviceContext ctx(p::NPUPlace(0)); | ||
CompareGrad<float>(&scope, ctx); | ||
} | ||
|