Skip to content

Commit

Permalink
Merge pull request #2165 from pkuyym/fix-2078
Browse files Browse the repository at this point in the history
Fix 2078
  • Loading branch information
pkuyym authored May 22, 2017
2 parents 519555e + dfc27aa commit d3e003b
Show file tree
Hide file tree
Showing 2 changed files with 103 additions and 23 deletions.
50 changes: 45 additions & 5 deletions paddle/gserver/evaluators/ChunkEvaluator.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@ limitations under the License. */
#include <vector>

#include "paddle/math/Vector.h"
#include "paddle/utils/StringUtil.h"

#include "Evaluator.h"

Expand Down Expand Up @@ -74,6 +75,7 @@ class ChunkEvaluator : public Evaluator {
std::vector<Segment> labelSegments_;
std::vector<Segment> outputSegments_;
std::set<int> excludedChunkTypes_;
mutable std::unordered_map<std::string, real> values_;

public:
virtual void init(const EvaluatorConfig& config) {
Expand Down Expand Up @@ -121,11 +123,9 @@ class ChunkEvaluator : public Evaluator {
}

virtual void printStats(std::ostream& os) const {
double precision = (double)numCorrect_ / numOutputSegments_;
double recall = (double)numCorrect_ / numLabelSegments_;
double f1 =
!numCorrect_ ? 0 : 2 * precision * recall / (precision + recall);
os << config_.name() << "=" << f1 << " true_chunks=" << numLabelSegments_
storeLocalValues();
os << config_.name() << "=" << values_["F1-score"]
<< " true_chunks=" << numLabelSegments_
<< " result_chunks=" << numOutputSegments_
<< " correct_chunks=" << numCorrect_;
}
Expand Down Expand Up @@ -243,6 +243,46 @@ class ChunkEvaluator : public Evaluator {
if (tag == tagSingle_) return true;
return false;
}

// three metrics: precision, recall and F1-score
void getNames(std::vector<std::string>* names) {
storeLocalValues();
names->reserve(names->size() + values_.size());
for (auto it = values_.begin(); it != values_.end(); ++it) {
names->push_back(config_.name() + "." + it->first);
}
}

// get value by field name
real getValue(const std::string& name, Error* err) const {
storeLocalValues();
std::vector<std::string> buffers;
paddle::str::split(name, '.', &buffers);
auto it = values_.find(buffers.back());
if (it == values_.end()) { // not found
*err = Error("No such key %s", name.c_str());
return 0.0f;
}

return it->second;
}

// get type of evaluator
std::string getTypeImpl() const { return "chunk"; }

private:
void storeLocalValues() const {
CHECK_GE(numOutputSegments_, 0);
CHECK_GE(numLabelSegments_, 0);
double precision =
!numOutputSegments_ ? 0 : (double)numCorrect_ / numOutputSegments_;
double recall =
!numLabelSegments_ ? 0 : (double)numCorrect_ / numLabelSegments_;
values_["precision"] = precision;
values_["recall"] = recall;
values_["F1-score"] =
!numCorrect_ ? 0 : 2 * precision * recall / (precision + recall);
}
};

REGISTER_EVALUATOR(chunk, ChunkEvaluator);
Expand Down
76 changes: 58 additions & 18 deletions python/paddle/trainer_config_helpers/evaluators.py
Original file line number Diff line number Diff line change
Expand Up @@ -347,39 +347,79 @@ def chunk_evaluator(
excluded_chunk_types=None, ):
"""
Chunk evaluator is used to evaluate segment labelling accuracy for a
sequence. It calculates the chunk detection F1 score.
sequence. It calculates precision, recall and F1 scores for the chunk detection.
A chunk is correctly detected if its beginning, end and type are correct.
Other chunk type is ignored.
To use chunk evaluator, several concepts need to be clarified firstly.
For each label in the label sequence, we have:
* **Chunk type** is the type of the whole chunk and a chunk consists of one or several words. (For example in NER, ORG for organization name, PER for person name etc.)
.. code-block:: python
* **Tag type** indicates the position of a word in a chunk. (B for begin, I for inside, E for end, S for single)
We can name a label by combining tag type and chunk type. (ie. B-ORG for begining of an organization name)
tagType = label % numTagType
chunkType = label / numTagType
otherChunkType = numChunkTypes
The construction of label dictionary should obey the following rules:
The total number of different labels is numTagType*numChunkTypes+1.
We support 4 labelling scheme.
The tag type for each of the scheme is shown as follows:
- Use one of the listed labelling schemes. These schemes differ in ways indicating chunk boundry.
.. code-block:: python
.. code-block:: text
Scheme Description
plain Use the same label for the whole chunk.
IOB Two labels for chunk type X, B-X for chunk begining and I-X for chunk inside.
IOE Two labels for chunk type X, E-X for chunk ending and I-X for chunk inside.
IOBES Four labels for chunk type X, B-X for chunk begining, I-X for chunk inside, E-X for chunk end and S-X for single word chunk.
To make it clear, let's illustrate by an NER example.
Assuming that there are three named entity types including ORG, PER and LOC which are called 'chunk type' here,
if 'IOB' scheme were used, the label set will be extended to a set including B-ORG, I-ORG, B-PER, I-PER, B-LOC, I-LOC and O,
in which B-ORG for begining of ORG and I-ORG for inside of ORG.
Prefixes which are called 'tag type' here are added to chunk types and there are two tag types including B and I.
Of course, the training data should be labeled accordingly.
- Mapping is done correctly by the listed equations and assigning protocol.
The following table are equations to extract tag type and chunk type from a label.
.. code-block:: text
tagType = label % numTagType
chunkType = label / numTagType
otherChunkType = numChunkTypes
The following table shows the mapping rule between tagType and tag type in each scheme.
.. code-block:: text
Scheme Begin Inside End Single
plain 0 - - -
IOB 0 1 - -
IOE - 0 1 -
IOBES 0 1 2 3
Continue the NER example, and the label dict should look like this to satify above equations:
.. code-block:: text
Scheme Begin Inside End Single
plain 0 - - -
IOB 0 1 - -
IOE - 0 1 -
IOBES 0 1 2 3
B-ORG 0
I-ORG 1
B-PER 2
I-PER 3
B-LOC 4
I-LOC 5
O 6
'plain' means the whole chunk must contain exactly the same chunk label.
In this example, chunkType has three values: 0 for ORG, 1 for PER, 2 for LOC, because the scheme is
"IOB" so tagType has two values: 0 for B and 1 for I.
Here we will use I-LOC to explain the above mapping rules in detail.
For I-LOC, the label id is 5, so we can get tagType=1 and chunkType=2, which means I-LOC is a part of NER chunk LOC
and the tag is I.
The simple usage is:
.. code-block:: python
eval = chunk_evaluator(input, label, chunk_scheme, num_chunk_types)
:param input: The input layers.
:type input: LayerOutput
:param label: An input layer containing the ground truth label.
Expand Down

0 comments on commit d3e003b

Please sign in to comment.