-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
【Hackathon 4th No.29】为 Paddle 新增 paddle.sparse.slice 稀疏 API (#53794)
- Loading branch information
1 parent
1f82bc3
commit d71baff
Showing
12 changed files
with
2,086 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,276 @@ | ||
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include "paddle/phi/kernels/sparse/unary_grad_kernel.h" | ||
#include "paddle/phi/kernels/sparse/unary_kernel.h" | ||
|
||
#include "paddle/phi/backends/cpu/cpu_context.h" | ||
#include "paddle/phi/core/kernel_registry.h" | ||
#include "paddle/phi/kernels/empty_kernel.h" | ||
#include "paddle/phi/kernels/funcs/slice_utils.h" | ||
|
||
namespace phi { | ||
namespace sparse { | ||
|
||
template <typename T, typename Context> | ||
void SliceCooGradCompute(const Context& dev_ctx, | ||
const SparseCooTensor& x, | ||
const SparseCooTensor& out_grad, | ||
const std::vector<int64_t>& axes, | ||
const std::vector<int64_t>& starts, | ||
const std::vector<int64_t>& ends, | ||
SparseCooTensor* x_grad) { | ||
// set x_grad | ||
const int64_t out_grad_nnz = out_grad.nnz(); | ||
auto sparse_dim = static_cast<int64_t>(out_grad.sparse_dim()); | ||
DenseTensor dx_indices = | ||
phi::Empty<int64_t, Context>(dev_ctx, {sparse_dim, out_grad_nnz}); | ||
DenseTensor dx_values = phi::Empty<T, Context>(dev_ctx, {out_grad_nnz}); | ||
auto* dx_indices_data = dx_indices.data<int64_t>(); | ||
auto* dx_values_data = dx_values.data<T>(); | ||
|
||
const auto* out_grad_indices_data = out_grad.indices().data<int64_t>(); | ||
const auto* out_grad_values_data = out_grad.values().data<T>(); | ||
|
||
for (int64_t j = 0; j < out_grad_nnz; ++j) { | ||
// set indices | ||
for (int64_t i = 0; i < sparse_dim; ++i) { | ||
dx_indices_data[i * out_grad_nnz + j] = | ||
out_grad_indices_data[i * out_grad_nnz + j]; | ||
} | ||
for (size_t ii = 0; ii < axes.size(); ++ii) { | ||
int64_t i = axes[ii]; | ||
dx_indices_data[i * out_grad_nnz + j] += starts[ii]; | ||
} | ||
// set value | ||
dx_values_data[j] = out_grad_values_data[j]; | ||
} | ||
|
||
x_grad->SetMember(dx_indices, dx_values, x.dims(), x.coalesced()); | ||
} | ||
|
||
template <typename T, typename Context> | ||
void SliceCooGradKernel(const Context& dev_ctx, | ||
const SparseCooTensor& x, | ||
const SparseCooTensor& out_grad, | ||
const phi::IntArray& axes, | ||
const phi::IntArray& starts, | ||
const phi::IntArray& ends, | ||
SparseCooTensor* x_grad) { | ||
const phi::DDim& x_dims = x.dims(); | ||
std::vector<int64_t> axes_vec = axes.GetData(); | ||
std::vector<int64_t> starts_vec = starts.GetData(); | ||
std::vector<int64_t> ends_vec = ends.GetData(); | ||
|
||
// update starts and ends | ||
funcs::CheckAndUpdateSparseSliceAttrs<int64_t>( | ||
x_dims, &axes_vec, &starts_vec, &ends_vec); | ||
|
||
SliceCooGradCompute<T, Context>( | ||
dev_ctx, x, out_grad, axes_vec, starts_vec, ends_vec, x_grad); | ||
} | ||
|
||
template <typename T> | ||
void GetCsrInputGradCrows(const int64_t* out_grad_crows_data, | ||
const int64_t out_grad_n_rows, | ||
const int64_t x_n_rows, | ||
const int64_t rows_start, | ||
int64_t* dx_crows_data, | ||
const int64_t out_grad_crows_offset = 0, | ||
const int64_t dx_crows_offset = 0) { | ||
for (int64_t i = 0; i < x_n_rows + 1; ++i) { | ||
int64_t idx = i + dx_crows_offset; | ||
if (i < rows_start) { | ||
dx_crows_data[idx] = 0; | ||
} else if (i < rows_start + out_grad_n_rows + 1) { | ||
int64_t out_grad_idx = out_grad_crows_offset + (i - rows_start); | ||
dx_crows_data[idx] = out_grad_crows_data[out_grad_idx]; | ||
} else { | ||
int64_t out_grad_idx = out_grad_crows_offset + out_grad_n_rows; | ||
dx_crows_data[idx] = out_grad_crows_data[out_grad_idx]; | ||
} | ||
} | ||
} | ||
|
||
template <typename T, typename Context> | ||
void SliceCsrGrad2D(const Context& dev_ctx, | ||
const SparseCsrTensor& x, | ||
const SparseCsrTensor& out_grad, | ||
const std::vector<int64_t>& axes, | ||
const std::vector<int64_t>& starts, | ||
const std::vector<int64_t>& ends, | ||
SparseCsrTensor* x_grad) { | ||
const int64_t out_grad_nnz = out_grad.nnz(); | ||
const int64_t n_rows = x.dims()[0]; | ||
const auto* out_grad_crows_data = out_grad.crows().data<int64_t>(); | ||
const auto* out_grad_cols_data = out_grad.cols().data<int64_t>(); | ||
const auto* out_grad_values_data = out_grad.values().data<T>(); | ||
|
||
DenseTensor dx_crows = phi::Empty<int64_t>(dev_ctx, {n_rows + 1}); | ||
DenseTensor dx_cols = phi::Empty<int64_t>(dev_ctx, {out_grad_nnz}); | ||
DenseTensor dx_values = phi::Empty<T, Context>(dev_ctx, {out_grad_nnz}); | ||
auto* dx_crows_data = dx_crows.data<int64_t>(); | ||
auto* dx_cols_data = dx_cols.data<int64_t>(); | ||
auto* dx_values_data = dx_values.data<T>(); | ||
|
||
// set cols | ||
for (int64_t i = 0; i < out_grad_nnz; ++i) { | ||
dx_cols_data[i] = out_grad_cols_data[i] + starts[1]; | ||
} | ||
// set values | ||
for (int64_t i = 0; i < out_grad_nnz; ++i) { | ||
dx_values_data[i] = out_grad_values_data[i]; | ||
} | ||
// set crows | ||
const int64_t out_grad_n_rows = out_grad.dims()[0]; | ||
GetCsrInputGradCrows<T>(out_grad_crows_data, | ||
out_grad_n_rows, | ||
n_rows, | ||
starts[0], | ||
dx_crows_data, | ||
0, | ||
0); | ||
x_grad->SetMember(dx_crows, dx_cols, dx_values, x.dims()); | ||
} | ||
|
||
template <typename T, typename Context> | ||
void SliceCsrGrad3D(const Context& dev_ctx, | ||
const SparseCsrTensor& x, | ||
const SparseCsrTensor& out_grad, | ||
const std::vector<int64_t>& axes, | ||
const std::vector<int64_t>& starts, | ||
const std::vector<int64_t>& ends, | ||
SparseCsrTensor* x_grad) { | ||
const int64_t dim0 = x.dims()[0], n_rows = x.dims()[1]; | ||
const int64_t out_grad_nnz = out_grad.nnz(); | ||
const auto* out_grad_crows_data = out_grad.crows().data<int64_t>(); | ||
const auto* out_grad_cols_data = out_grad.cols().data<int64_t>(); | ||
const auto* out_grad_values_data = out_grad.values().data<T>(); | ||
|
||
DenseTensor dx_crows = phi::Empty<int64_t>(dev_ctx, {dim0 * (n_rows + 1)}); | ||
DenseTensor dx_cols = phi::Empty<int64_t>(dev_ctx, {out_grad_nnz}); | ||
DenseTensor dx_values = phi::Empty<T, Context>(dev_ctx, {out_grad_nnz}); | ||
auto* dx_crows_data = dx_crows.data<int64_t>(); | ||
auto* dx_cols_data = dx_cols.data<int64_t>(); | ||
auto* dx_values_data = dx_values.data<T>(); | ||
|
||
// set cols | ||
for (int64_t i = 0; i < out_grad_nnz; ++i) { | ||
dx_cols_data[i] = out_grad_cols_data[i] + starts[2]; | ||
} | ||
// set values | ||
for (int64_t i = 0; i < out_grad_nnz; ++i) { | ||
dx_values_data[i] = out_grad_values_data[i]; | ||
} | ||
// set crows | ||
int64_t out_grad_n_rows = out_grad.dims()[1]; | ||
for (int64_t i = 0; i < dim0; ++i) { | ||
if (i < starts[0] || i >= ends[0]) { | ||
for (int64_t j = 0; j < n_rows + 1; ++j) { | ||
dx_crows_data[i * (n_rows + 1) + j] = 0; | ||
} | ||
} else { | ||
int64_t out_grad_crows_offset = (i - starts[0]) * (out_grad_n_rows + 1); | ||
int64_t dx_crows_offset = i * (n_rows + 1); | ||
GetCsrInputGradCrows<T>(out_grad_crows_data, | ||
out_grad_n_rows, | ||
n_rows, | ||
starts[1], | ||
dx_crows_data, | ||
out_grad_crows_offset, | ||
dx_crows_offset); | ||
} | ||
} | ||
x_grad->SetMember(dx_crows, dx_cols, dx_values, x.dims()); | ||
} | ||
|
||
template <typename T, typename Context> | ||
void SliceCsrGradCompute(const Context& dev_ctx, | ||
const SparseCsrTensor& x, | ||
const SparseCsrTensor& out_grad, | ||
const std::vector<int64_t>& axes, | ||
const std::vector<int64_t>& starts, | ||
const std::vector<int64_t>& ends, | ||
SparseCsrTensor* x_grad) { | ||
const phi::DDim& x_dims = x.dims(); | ||
|
||
// Construct new axes, starts, and ends | ||
std::vector<int64_t> new_axes(3), new_starts(3), new_ends(3); | ||
funcs::ConstructNewSliceAttrs( | ||
x_dims, axes, starts, ends, &new_axes, &new_starts, &new_ends); | ||
|
||
const int64_t sparse_dim = x_dims.size(); | ||
if (sparse_dim == 2) { | ||
SliceCsrGrad2D<T, Context>( | ||
dev_ctx, x, out_grad, new_axes, new_starts, new_ends, x_grad); | ||
} else if (sparse_dim == 3) { | ||
SliceCsrGrad3D<T, Context>( | ||
dev_ctx, x, out_grad, new_axes, new_starts, new_ends, x_grad); | ||
} else { | ||
// throw exception | ||
phi::errors::InvalidArgument( | ||
"Slice grad for Sparse CSR Tensor only support 2-D or 3-D, but got " | ||
"%d-D.", | ||
x_dims.size()); | ||
} | ||
} | ||
|
||
template <typename T, typename Context> | ||
void SliceCsrGradKernel(const Context& dev_ctx, | ||
const SparseCsrTensor& x, | ||
const SparseCsrTensor& out_grad, | ||
const phi::IntArray& axes, | ||
const phi::IntArray& starts, | ||
const phi::IntArray& ends, | ||
SparseCsrTensor* x_grad) { | ||
const phi::DDim& x_dims = x.dims(); | ||
std::vector<int64_t> axes_vec = axes.GetData(); | ||
std::vector<int64_t> starts_vec = starts.GetData(); | ||
std::vector<int64_t> ends_vec = ends.GetData(); | ||
|
||
// Update starts and ends | ||
funcs::CheckAndUpdateSparseSliceAttrs<int64_t>( | ||
x_dims, &axes_vec, &starts_vec, &ends_vec); | ||
|
||
SliceCsrGradCompute<T, Context>( | ||
dev_ctx, x, out_grad, axes_vec, starts_vec, ends_vec, x_grad); | ||
} | ||
} // namespace sparse | ||
} // namespace phi | ||
|
||
PD_REGISTER_KERNEL(slice_coo_grad, | ||
CPU, | ||
ALL_LAYOUT, | ||
phi::sparse::SliceCooGradKernel, | ||
float, | ||
double, | ||
int8_t, | ||
uint8_t, | ||
int16_t, | ||
int, | ||
int64_t, | ||
bool) {} | ||
|
||
PD_REGISTER_KERNEL(slice_csr_grad, | ||
CPU, | ||
ALL_LAYOUT, | ||
phi::sparse::SliceCsrGradKernel, | ||
float, | ||
double, | ||
int8_t, | ||
uint8_t, | ||
int16_t, | ||
int, | ||
int64_t, | ||
bool) {} |
Oops, something went wrong.