-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
normal: support mean and std tensor; randn = standard_normal (#26367)
- Loading branch information
1 parent
3a9417f
commit e6675f4
Showing
5 changed files
with
501 additions
and
141 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,197 @@ | ||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import unittest | ||
import numpy as np | ||
import paddle | ||
import copy | ||
|
||
np.random.seed(10) | ||
|
||
|
||
class TestNormalAPI(unittest.TestCase): | ||
def setUp(self): | ||
self.mean = 1.0 | ||
self.std = 0.0 | ||
self.shape = None | ||
self.repeat_num = 1000 | ||
self.set_attrs() | ||
self.dtype = self.get_dtype() | ||
self.place=paddle.CUDAPlace(0) \ | ||
if paddle.fluid.core.is_compiled_with_cuda() \ | ||
else paddle.CPUPlace() | ||
|
||
def set_attrs(self): | ||
self.shape = [8, 12] | ||
|
||
def get_shape(self): | ||
if isinstance(self.mean, np.ndarray): | ||
shape = self.mean.shape | ||
elif isinstance(self.std, np.ndarray): | ||
shape = self.std.shape | ||
else: | ||
shape = self.shape | ||
return list(shape) | ||
|
||
def get_dtype(self): | ||
if isinstance(self.mean, np.ndarray): | ||
return self.mean.dtype | ||
elif isinstance(self.std, np.ndarray): | ||
return self.std.dtype | ||
else: | ||
return 'float32' | ||
|
||
def static_api(self): | ||
shape = self.get_shape() | ||
ret_all_shape = copy.deepcopy(shape) | ||
ret_all_shape.insert(0, self.repeat_num) | ||
ret_all = np.zeros(ret_all_shape, self.dtype) | ||
if isinstance(self.mean, np.ndarray) \ | ||
and isinstance(self.std, np.ndarray): | ||
with paddle.static.program_guard(paddle.static.Program()): | ||
mean = paddle.data('Mean', self.mean.shape, self.mean.dtype) | ||
std = paddle.data('Std', self.std.shape, self.std.dtype) | ||
out = paddle.normal(mean, std, self.shape) | ||
|
||
exe = paddle.static.Executor(self.place) | ||
for i in range(self.repeat_num): | ||
ret = exe.run(feed={ | ||
'Mean': self.mean, | ||
'Std': self.std.reshape(shape) | ||
}, | ||
fetch_list=[out]) | ||
ret_all[i] = ret[0] | ||
return ret_all | ||
elif isinstance(self.mean, np.ndarray): | ||
with paddle.static.program_guard(paddle.static.Program()): | ||
mean = paddle.data('Mean', self.mean.shape, self.mean.dtype) | ||
out = paddle.normal(mean, self.std, self.shape) | ||
|
||
exe = paddle.static.Executor(self.place) | ||
for i in range(self.repeat_num): | ||
ret = exe.run(feed={'Mean': self.mean}, fetch_list=[out]) | ||
ret_all[i] = ret[0] | ||
return ret_all | ||
elif isinstance(self.std, np.ndarray): | ||
with paddle.static.program_guard(paddle.static.Program()): | ||
std = paddle.data('Std', self.std.shape, self.std.dtype) | ||
out = paddle.normal(self.mean, std, self.shape) | ||
|
||
exe = paddle.static.Executor(self.place) | ||
for i in range(self.repeat_num): | ||
ret = exe.run(feed={'Std': self.std}, fetch_list=[out]) | ||
ret_all[i] = ret[0] | ||
return ret_all | ||
else: | ||
with paddle.static.program_guard(paddle.static.Program()): | ||
out = paddle.normal(self.mean, self.std, self.shape) | ||
|
||
exe = paddle.static.Executor(self.place) | ||
for i in range(self.repeat_num): | ||
ret = exe.run(fetch_list=[out]) | ||
ret_all[i] = ret[0] | ||
return ret_all | ||
|
||
def dygraph_api(self): | ||
paddle.disable_static(self.place) | ||
shape = self.get_shape() | ||
ret_all_shape = copy.deepcopy(shape) | ||
ret_all_shape.insert(0, self.repeat_num) | ||
ret_all = np.zeros(ret_all_shape, self.dtype) | ||
|
||
mean = paddle.to_tensor(self.mean) \ | ||
if isinstance(self.mean, np.ndarray) else self.mean | ||
std = paddle.to_tensor(self.std) \ | ||
if isinstance(self.std, np.ndarray) else self.std | ||
for i in range(self.repeat_num): | ||
out = paddle.normal(mean, std, self.shape) | ||
ret_all[i] = out.numpy() | ||
paddle.enable_static() | ||
return ret_all | ||
|
||
def test_api(self): | ||
ret_static = self.static_api() | ||
ret_dygraph = self.dygraph_api() | ||
for ret in [ret_static, ret_dygraph]: | ||
shape_ref = self.get_shape() | ||
self.assertEqual(shape_ref, list(ret[0].shape)) | ||
|
||
ret = ret.flatten().reshape([self.repeat_num, -1]) | ||
mean = np.mean(ret, axis=0) | ||
std = np.std(ret, axis=0) | ||
mean_ref=self.mean.reshape([1, -1]) \ | ||
if isinstance(self.mean, np.ndarray) else self.mean | ||
std_ref=self.std.reshape([1, -1]) \ | ||
if isinstance(self.std, np.ndarray) else self.std | ||
self.assertTrue(np.allclose(mean_ref, mean, 0.1, 0.1)) | ||
self.assertTrue(np.allclose(std_ref, std, 0.1, 0.1)) | ||
|
||
|
||
class TestNormalAPI_mean_is_tensor(TestNormalAPI): | ||
def set_attrs(self): | ||
self.mean = np.random.uniform(-2, -1, [2, 3, 4, 5]).astype('float64') | ||
|
||
|
||
class TestNormalAPI_std_is_tensor(TestNormalAPI): | ||
def set_attrs(self): | ||
self.std = np.random.uniform(0.7, 1, [2, 3, 17]).astype('float64') | ||
|
||
|
||
class TestNormalAPI_mean_std_are_tensor(TestNormalAPI): | ||
def set_attrs(self): | ||
self.mean = np.random.uniform(1, 2, [1, 100]).astype('float64') | ||
self.std = np.random.uniform(0.5, 1, [1, 100]).astype('float64') | ||
|
||
|
||
class TestNormalAPI_mean_std_are_tensor_with_different_dtype(TestNormalAPI): | ||
def set_attrs(self): | ||
self.mean = np.random.uniform(1, 2, [100]).astype('float64') | ||
self.std = np.random.uniform(1, 2, [100]).astype('float32') | ||
|
||
|
||
class TestNormalAlias(unittest.TestCase): | ||
def test_alias(self): | ||
paddle.disable_static() | ||
shape = [1, 2, 3] | ||
out1 = paddle.normal(shape=shape) | ||
out2 = paddle.tensor.normal(shape=shape) | ||
out3 = paddle.tensor.random.normal(shape=shape) | ||
paddle.enable_static() | ||
|
||
|
||
class TestNormalErrors(unittest.TestCase): | ||
def test_errors(self): | ||
with paddle.static.program_guard(paddle.static.Program()): | ||
mean = [1, 2, 3] | ||
self.assertRaises(TypeError, paddle.normal, mean) | ||
|
||
std = [1, 2, 3] | ||
self.assertRaises(TypeError, paddle.normal, std=std) | ||
|
||
mean = paddle.data('Mean', [100], 'int32') | ||
self.assertRaises(TypeError, paddle.normal, mean) | ||
|
||
std = paddle.data('Std', [100], 'int32') | ||
self.assertRaises(TypeError, paddle.normal, mean=1.0, std=std) | ||
|
||
self.assertRaises(TypeError, paddle.normal, shape=1) | ||
|
||
self.assertRaises(TypeError, paddle.normal, shape=[1.0]) | ||
|
||
shape = paddle.data('Shape', [100], 'float32') | ||
self.assertRaises(TypeError, paddle.normal, shape=shape) | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.