Skip to content

Commit

Permalink
[NPU] Support npu op elementwise_pow (#31576)
Browse files Browse the repository at this point in the history
  • Loading branch information
oyjxer authored Mar 15, 2021
1 parent 7241bc2 commit f250416
Show file tree
Hide file tree
Showing 2 changed files with 219 additions and 0 deletions.
58 changes: 58 additions & 0 deletions paddle/fluid/operators/elementwise/elementwise_pow_op_npu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>

#include "paddle/fluid/operators/elementwise/elementwise_pow_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
class ElementwisePowNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");

auto* out = ctx.Output<Tensor>("Out");

auto place = ctx.GetPlace();

out->mutable_data<T>(place);

auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();

auto runner = NpuOpRunner("Pow", {*x, *y}, {*out}, {});
runner.Run(stream);
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(
elementwise_pow,
ops::ElementwisePowNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::ElementwisePowNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);

161 changes: 161 additions & 0 deletions python/paddle/fluid/tests/unittests/npu/test_elementwise_pow_op_npu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,161 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid

paddle.enable_static()
SEED = 2021


@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestElementwisePow(OpTest):
def setUp(self):
self.set_npu()
self.op_type = "elementwise_pow"
self.place = paddle.NPUPlace(0)

self.init_dtype()
np.random.seed(SEED)
x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
y = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
out = np.power(x, y)

self.inputs = {
'X': OpTest.np_dtype_to_fluid_dtype(x),
'Y': OpTest.np_dtype_to_fluid_dtype(y)
}
self.attrs = {}
self.outputs = {'Out': out}

def set_npu(self):
self.__class__.use_npu = True

def init_dtype(self):
self.dtype = np.float32

def test_check_output(self):
self.check_output_with_place(self.place, check_dygraph=False)

# TODO(ascendrc): Pow grad test
# def test_check_grad(self):
# if self.dtype == np.float16:
# return
# self.check_grad(['X'], 'Out')
#


@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestElementwisePowFp16(OpTest):
def setUp(self):
self.set_npu()
self.op_type = "elementwise_pow"
self.place = paddle.NPUPlace(0)

self.init_dtype()
np.random.seed(SEED)
x = np.random.uniform(1, 2, [3, 4]).astype(self.dtype)
y = np.random.uniform(1, 2, [3, 4]).astype(self.dtype)
out = np.power(x, y)

self.inputs = {
'X': OpTest.np_dtype_to_fluid_dtype(x),
'Y': OpTest.np_dtype_to_fluid_dtype(y)
}
self.attrs = {}
self.outputs = {'Out': out}

def set_npu(self):
self.__class__.use_npu = True
self.__class__.no_need_check_grad = True

def init_dtype(self):
self.dtype = np.float16

def test_check_output(self):
self.check_output_with_place(self.place, check_dygraph=False, atol=1e-5)


@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestElementwisePowNet(unittest.TestCase):
def _test(self, run_npu=True):
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
np.random.seed(SEED)

a_np = np.random.random(size=(32, 32)).astype('float32')
b_np = np.random.random(size=(32, 32)).astype('float32')
label_np = np.random.randint(2, size=(32, 1)).astype('int64')

with paddle.static.program_guard(main_prog, startup_prog):
a = paddle.static.data(name="a", shape=[32, 32], dtype='float32')
b = paddle.static.data(name="b", shape=[32, 32], dtype='float32')
label = paddle.static.data(
name="label", shape=[32, 1], dtype='int64')

c = paddle.pow(a, b)

fc_1 = fluid.layers.fc(input=c, size=128)
prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')

cost = fluid.layers.cross_entropy(input=prediction, label=label)
loss = fluid.layers.reduce_mean(cost)
sgd = fluid.optimizer.SGD(learning_rate=0.01)
sgd.minimize(loss)

if run_npu:
place = paddle.NPUPlace(0)
else:
place = paddle.CPUPlace()

exe = paddle.static.Executor(place)
exe.run(startup_prog)

print("Start run on {}".format(place))
for epoch in range(100):

pred_res, loss_res = exe.run(
main_prog,
feed={"a": a_np,
"b": b_np,
"label": label_np},
fetch_list=[prediction, loss])
if epoch % 10 == 0:
print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
epoch, pred_res[0], loss_res))

return pred_res, loss_res

def test_npu(self):
cpu_pred, cpu_loss = self._test(False)
npu_pred, npu_loss = self._test(True)

self.assertTrue(np.allclose(npu_pred, cpu_pred))
self.assertTrue(np.allclose(npu_loss, cpu_loss))


if __name__ == '__main__':
unittest.main()

0 comments on commit f250416

Please sign in to comment.