-
Notifications
You must be signed in to change notification settings - Fork 5.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add mean IOU op. #10519
Merged
Merged
Add mean IOU op. #10519
Changes from all commits
Commits
Show all changes
10 commits
Select commit
Hold shift + click to select a range
7732d89
Add mean_iou op.
wanghaoshuang 3bb246c
Add unitest for mean iou op.
wanghaoshuang f161d69
Add optional collections of confusion matrix and mean_iou.
wanghaoshuang 5855926
Fix cuda kernel.
wanghaoshuang c7eb88b
Refine code.
wanghaoshuang 13e7b5a
Add python api and fix cuda kernel.
wanghaoshuang 70ae3d2
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
wanghaoshuang ea505a4
Fix comments.
wanghaoshuang e706336
Small fix.
wanghaoshuang 8c8d004
Small fix.
wanghaoshuang File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,110 @@ | ||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/fluid/operators/mean_iou_op.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
class MeanIoUOp : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
||
void InferShape(framework::InferShapeContext* ctx) const override { | ||
PADDLE_ENFORCE(ctx->HasInput("Predictions"), | ||
"Input (Predictions) of MeanIoU op should not be null."); | ||
PADDLE_ENFORCE(ctx->HasInput("Labels"), | ||
"Input (labels) of MeanIoU op should not be null."); | ||
PADDLE_ENFORCE(ctx->HasOutput("OutMeanIou"), | ||
"Output (OutMeanIou) of MeanIoU op should not be null."); | ||
PADDLE_ENFORCE(ctx->HasOutput("OutWrong"), | ||
"Output (OutWrong) of MeanIoU op should not be null."); | ||
PADDLE_ENFORCE(ctx->HasOutput("OutCorrect"), | ||
"Output (OutWrong) of MeanIoU op should not be null."); | ||
|
||
int64_t num_classes = | ||
static_cast<int64_t>(ctx->Attrs().Get<int>("num_classes")); | ||
|
||
ctx->SetOutputDim("OutMeanIou", {1}); | ||
ctx->SetOutputDim("OutWrong", {num_classes}); | ||
ctx->SetOutputDim("OutCorrect", {num_classes}); | ||
} | ||
|
||
protected: | ||
framework::OpKernelType GetExpectedKernelType( | ||
const framework::ExecutionContext& ctx) const override { | ||
return framework::OpKernelType( | ||
framework::ToDataType(ctx.Input<Tensor>("Predictions")->type()), | ||
ctx.GetPlace()); | ||
} | ||
}; | ||
|
||
class MeanIoUOpMaker : public framework::OpProtoAndCheckerMaker { | ||
public: | ||
void Make() override { | ||
AddInput("Predictions", | ||
"(Tensor), A Tensor of prediction results for semantic labels" | ||
" with type int32 or int64. The rank should be greater than 1."); | ||
AddInput( | ||
"Labels", | ||
"(Tensor), A Tensor of ground truth labels with type int32 or int64." | ||
"Its shape should be the same as Input(Predictions)."); | ||
AddInput("InWrongs", | ||
"(vector<Tensor>), A list of Tensor with shape " | ||
"[num_classes]. They are used to collect wrong number among " | ||
"batches. Empty list is also valid here.") | ||
.AsDuplicable() | ||
.AsDispensable(); | ||
AddInput( | ||
"InCorrects", | ||
"(vector<Tensor>), A list of Tensor with shape " | ||
"[num_classes]. They are used to collect correct number among batches. " | ||
"Empty list is also valid here.") | ||
.AsDuplicable() | ||
.AsDispensable(); | ||
AddInput("InMeanIou", | ||
"(vector<Tensor>), A list of Tensor that Output(mean_iou) should " | ||
"be added to. Empty list is also valid here.") | ||
.AsDuplicable() | ||
.AsDispensable(); | ||
AddOutput("OutMeanIou", | ||
"(vector<Tensor>), A Tensor representing the" | ||
" mean intersection-over-union with shape [1]."); | ||
AddOutput("OutWrong", "(Tensor), A Tensor with shape [num_classes]. "); | ||
AddOutput("OutCorrect", "(Tensor), A Tensor with shape [num_classes]. "); | ||
AddAttr<int>("num_classes", "(int), The possible number of labels."); | ||
|
||
AddComment(R"DOC( | ||
mean-IOU Operator. | ||
Mean Intersection-Over-Union is a common evaluation metric for | ||
semantic image segmentation, which first computes the IOU for each | ||
semantic class and then computes the average over classes. | ||
IOU is defined as follows: | ||
IOU = true_positive / (true_positive + false_positive + false_negative). | ||
It is based on pixel level area while "IOU Similarity Operator" | ||
is based on area of rectangle. | ||
)DOC"); | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
REGISTER_OPERATOR(mean_iou, ops::MeanIoUOp, ops::MeanIoUOpMaker, | ||
paddle::framework::EmptyGradOpMaker); | ||
REGISTER_OP_CPU_KERNEL(mean_iou, ops::MeanIoUKernel<int>, | ||
ops::MeanIoUKernel<int32_t>, | ||
ops::MeanIoUKernel<int64_t>); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,164 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/fluid/operators/math/math_function.h" | ||
#include "paddle/fluid/operators/mean_iou_op.h" | ||
#include "paddle/fluid/platform/cuda_primitives.h" | ||
#include "paddle/fluid/platform/gpu_info.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
using platform::PADDLE_CUDA_NUM_THREADS; | ||
|
||
#define CUDA_1D_KERNEL_LOOP(i, n) \ | ||
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \ | ||
i += blockDim.x * gridDim.x) | ||
|
||
template <typename T> | ||
__global__ void CountCUDAKernel(const int num_classes, const int count, | ||
const T* predictions, const T* labels, | ||
int* wrong, int* correct) { | ||
extern __shared__ int blcok_cache[]; | ||
int* wrong_c = blcok_cache; | ||
int* correct_c = blcok_cache + num_classes; | ||
// init cache | ||
for (int i = threadIdx.x; i < num_classes * 2; i += blockDim.x) { | ||
blcok_cache[i] = 0; | ||
} | ||
__syncthreads(); | ||
|
||
T pred; | ||
T label; | ||
CUDA_1D_KERNEL_LOOP(i, count) { | ||
pred = predictions[i]; | ||
label = labels[i]; | ||
if (pred == label) { | ||
atomicAdd(correct_c + pred, 1); | ||
} else { | ||
atomicAdd(wrong_c + pred, 1); | ||
atomicAdd(wrong_c + label, 1); | ||
} | ||
} | ||
|
||
__syncthreads(); | ||
|
||
for (int i = threadIdx.x; i < num_classes; i += blockDim.x) { | ||
atomicAdd(wrong + i, wrong_c[i]); | ||
atomicAdd(correct + i, correct_c[i]); | ||
} | ||
} | ||
|
||
__global__ void ComputeIoUCUDAKernel(const int num_classes, int* wrong, | ||
int* correct, float* ious, float* iou) { | ||
__shared__ int valid_count_c; | ||
if (threadIdx.x == 0) { | ||
valid_count_c = 0; | ||
} | ||
__syncthreads(); | ||
CUDA_1D_KERNEL_LOOP(i, num_classes) { | ||
int wrong_n = wrong[i]; | ||
int correct_n = correct[i]; | ||
int denominator = wrong_n + correct_n; | ||
if (denominator > 0) { | ||
atomicAdd(&valid_count_c, 1); | ||
ious[i] = static_cast<float>(correct_n) / denominator; | ||
} else { | ||
ious[i] = 0; | ||
} | ||
} | ||
__syncthreads(); | ||
if (threadIdx.x == 0) { | ||
float iou_sum = 0; | ||
for (int i = 0; i < num_classes; ++i) { | ||
iou_sum += ious[i]; | ||
} | ||
iou[0] += iou_sum / valid_count_c; | ||
} | ||
} | ||
|
||
template <typename T> | ||
class MeanIoUCUDAOpKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
auto& place = *ctx.template device_context<platform::CUDADeviceContext>() | ||
.eigen_device(); | ||
// get input and output tensor | ||
auto* predictions = ctx.Input<Tensor>("Predictions"); | ||
auto* labels = ctx.Input<Tensor>("Labels"); | ||
auto* out_mean_iou = ctx.Output<Tensor>("OutMeanIou"); | ||
auto* out_wrong = ctx.Output<Tensor>("OutWrong"); | ||
auto* out_correct = ctx.Output<Tensor>("OutCorrect"); | ||
int num_classes = static_cast<int>(ctx.Attr<int>("num_classes")); | ||
|
||
// Get data ptr | ||
const T* predictions_data = predictions->data<T>(); | ||
const T* labels_data = labels->data<T>(); | ||
int* out_wrong_data = out_wrong->mutable_data<int>(ctx.GetPlace()); | ||
int* out_correct_data = out_correct->mutable_data<int>(ctx.GetPlace()); | ||
float* out_mean_iou_data = | ||
out_mean_iou->mutable_data<float>(ctx.GetPlace()); | ||
|
||
// Get Eigen tensor | ||
auto out_mean_iou_t = EigenTensor<float, 1>::From(*out_mean_iou); | ||
auto out_wrong_t = EigenTensor<int, 1>::From(*out_wrong); | ||
auto out_correct_t = EigenTensor<int, 1>::From(*out_correct); | ||
|
||
// Temporary tensor | ||
Tensor ious; | ||
float* ious_data = ious.mutable_data<float>( | ||
{static_cast<int64_t>(num_classes)}, ctx.GetPlace()); | ||
auto ious_t = EigenTensor<float, 1>::From(ious); | ||
|
||
// Init out_wrong, out_correct and out_mean_iou | ||
out_wrong_t.device(place) = out_wrong_t.constant(0); | ||
out_correct_t.device(place) = out_correct_t.constant(0); | ||
out_mean_iou_t.device(place) = out_mean_iou_t.constant(0.0f); | ||
|
||
// collect pre wrong, correct and mean_iou | ||
auto in_mean_ious = ctx.MultiInput<Tensor>("InMeanIou"); | ||
for (int i = 0; i < in_mean_ious.size(); ++i) { | ||
out_mean_iou_t.device(place) += | ||
EigenTensor<float, 1>::From(*in_mean_ious[i]); | ||
} | ||
auto in_wrongs = ctx.MultiInput<Tensor>("InWrongs"); | ||
for (int i = 0; i < in_wrongs.size(); ++i) { | ||
out_wrong_t.device(place) += EigenTensor<int, 1>::From(*in_wrongs[i]); | ||
} | ||
auto in_corrects = ctx.MultiInput<Tensor>("InCorrects"); | ||
for (int i = 0; i < in_corrects.size(); ++i) { | ||
out_correct_t.device(place) += EigenTensor<int, 1>::From(*in_corrects[i]); | ||
} | ||
// compute | ||
auto stream = ctx.cuda_device_context().stream(); | ||
int block = PADDLE_CUDA_NUM_THREADS; | ||
int grid = (predictions->numel() + block - 1) / block; | ||
int cache_size = (num_classes * 2 + 1) * sizeof(int); | ||
CountCUDAKernel<T><<<grid, block, cache_size, stream>>>( | ||
num_classes, predictions->numel(), predictions_data, labels_data, | ||
out_wrong_data, out_correct_data); | ||
ctx.device_context().Wait(); | ||
ComputeIoUCUDAKernel<<<1, block, 0, stream>>>(num_classes, out_wrong_data, | ||
out_correct_data, ious_data, | ||
out_mean_iou_data); | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
REGISTER_OP_CUDA_KERNEL(mean_iou, ops::MeanIoUCUDAOpKernel<int>, | ||
ops::MeanIoUCUDAOpKernel<int64_t>, | ||
ops::MeanIoUCUDAOpKernel<int32_t>); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#pragma once | ||
#include <algorithm> | ||
#include "paddle/fluid/framework/op_registry.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
using Tensor = framework::Tensor; | ||
|
||
template <typename T, int D, int MajorType = Eigen::RowMajor, | ||
typename IndexType = Eigen::DenseIndex> | ||
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>; | ||
|
||
template <typename T> | ||
class MeanIoUKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
auto& place = *ctx.template device_context<platform::CPUDeviceContext>() | ||
.eigen_device(); | ||
// get input and output tensor | ||
auto* predictions = ctx.Input<Tensor>("Predictions"); | ||
auto* labels = ctx.Input<Tensor>("Labels"); | ||
auto* out_mean_iou = ctx.Output<Tensor>("OutMeanIou"); | ||
auto* out_wrong = ctx.Output<Tensor>("OutWrong"); | ||
auto* out_correct = ctx.Output<Tensor>("OutCorrect"); | ||
int num_classes = static_cast<int>(ctx.Attr<int>("num_classes")); | ||
|
||
// get data ptr | ||
const T* predictions_data = predictions->data<T>(); | ||
const T* labels_data = labels->data<T>(); | ||
float* out_mean_iou_data = | ||
out_mean_iou->mutable_data<float>(ctx.GetPlace()); | ||
int* out_wrong_data = out_wrong->mutable_data<int>(ctx.GetPlace()); | ||
int* out_correct_data = out_correct->mutable_data<int>(ctx.GetPlace()); | ||
|
||
// get eigen tensor | ||
auto out_mean_iou_t = EigenTensor<float, 1>::From(*out_mean_iou); | ||
auto out_wrong_t = EigenTensor<int, 1>::From(*out_wrong); | ||
auto out_correct_t = EigenTensor<int, 1>::From(*out_correct); | ||
|
||
// Tmp tensor | ||
Tensor denominator; | ||
Tensor valid_count; | ||
Tensor iou_sum; | ||
|
||
// get data ptr of tmp tensor | ||
int* denominator_data = denominator.mutable_data<int>( | ||
{static_cast<int64_t>(num_classes)}, ctx.GetPlace()); | ||
int* valid_count_data = valid_count.mutable_data<int>({1}, ctx.GetPlace()); | ||
float* iou_sum_data = iou_sum.mutable_data<float>({1}, ctx.GetPlace()); | ||
|
||
// get eigen tensor of tmp tensor | ||
auto denominator_t = EigenTensor<int, 1>::From(denominator); | ||
auto valid_count_t = EigenTensor<int, 1>::From(valid_count); | ||
auto iou_sum_t = EigenTensor<float, 1>::From(iou_sum); | ||
|
||
// init out_wrong, out_correct and out_mean_iou | ||
out_wrong_t = out_wrong_t.constant(0); | ||
out_correct_t = out_correct_t.constant(0); | ||
out_mean_iou_t = out_mean_iou_t.constant(0); | ||
|
||
// collect pre wrong, correct and mean_iou | ||
auto in_mean_ious = ctx.MultiInput<Tensor>("InMeanIou"); | ||
for (size_t i = 0; i < in_mean_ious.size(); ++i) { | ||
out_mean_iou_t.device(place) += | ||
EigenTensor<float, 1>::From(*in_mean_ious[i]); | ||
} | ||
auto in_wrongs = ctx.MultiInput<Tensor>("InWrongs"); | ||
for (size_t i = 0; i < in_wrongs.size(); ++i) { | ||
out_wrong_t.device(place) += EigenTensor<int, 1>::From(*in_wrongs[i]); | ||
} | ||
auto in_corrects = ctx.MultiInput<Tensor>("InCorrects"); | ||
for (size_t i = 0; i < in_corrects.size(); ++i) { | ||
out_correct_t.device(place) += EigenTensor<int, 1>::From(*in_corrects[i]); | ||
} | ||
|
||
// compute | ||
for (int64_t i = 0; i < predictions->numel(); ++i) { | ||
if (predictions_data[i] == labels_data[i]) { | ||
out_correct_data[predictions_data[i]] += 1; | ||
} else { | ||
out_wrong_data[labels_data[i]] += 1; | ||
out_wrong_data[predictions_data[i]] += 1; | ||
} | ||
} | ||
|
||
denominator_t = out_wrong_t + out_correct_t; | ||
valid_count_t = | ||
(denominator_t > denominator_t.constant(0.0f)).cast<int>().sum(); | ||
|
||
for (int i = 0; i < num_classes; ++i) { | ||
if (denominator_data[i] == 0) { | ||
denominator_data[i] = 1; | ||
} | ||
} | ||
|
||
iou_sum_t = | ||
(out_correct_t.cast<float>() / denominator_t.cast<float>()).sum(); | ||
out_mean_iou_data[0] += (iou_sum_data[0] / valid_count_data[0]); | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
如果num_classes较小, predictions的shape较大,会导致这个kernel的性能非常低效,其实感觉类似这样的kernel,先CPU即可,后续最好评估下时间。
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.