-
Notifications
You must be signed in to change notification settings - Fork 5.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
add interface and unittest for nce layer #180
Merged
Merged
Changes from all commits
Commits
Show all changes
3 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -13,157 +13,71 @@ | |
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
#Todo(luotao02) This config is only used for unitest. It is out of date now, and will be updated later. | ||
|
||
default_initial_std(0.5) | ||
|
||
model_type("nn") | ||
|
||
DataLayer( | ||
name = "input", | ||
size = 3, | ||
) | ||
|
||
DataLayer( | ||
name = "weight", | ||
size = 1, | ||
) | ||
|
||
Layer( | ||
name = "layer1_1", | ||
type = "fc", | ||
size = 5, | ||
active_type = "sigmoid", | ||
inputs = "input", | ||
) | ||
|
||
Layer( | ||
name = "layer1_2", | ||
type = "fc", | ||
size = 12, | ||
active_type = "linear", | ||
inputs = Input("input", parameter_name='sharew'), | ||
) | ||
|
||
Layer( | ||
name = "layer1_3", | ||
type = "fc", | ||
size = 3, | ||
active_type = "tanh", | ||
inputs = "input", | ||
) | ||
|
||
Layer( | ||
name = "layer1_5", | ||
type = "fc", | ||
size = 3, | ||
active_type = "tanh", | ||
inputs = Input("input", | ||
learning_rate=0.01, | ||
momentum=0.9, | ||
decay_rate=0.05, | ||
initial_mean=0.0, | ||
initial_std=0.01, | ||
format = "csc", | ||
nnz = 4) | ||
) | ||
|
||
FCLayer( | ||
name = "layer1_4", | ||
size = 5, | ||
active_type = "square", | ||
inputs = "input", | ||
drop_rate = 0.5, | ||
) | ||
|
||
Layer( | ||
name = "pool", | ||
type = "pool", | ||
inputs = Input("layer1_2", | ||
pool = Pool(pool_type="cudnn-avg-pool", | ||
channels = 1, | ||
size_x = 2, | ||
size_y = 3, | ||
img_width = 3, | ||
padding = 1, | ||
padding_y = 2, | ||
stride = 2, | ||
stride_y = 3)) | ||
) | ||
|
||
Layer( | ||
name = "concat", | ||
type = "concat", | ||
inputs = ["layer1_3", "layer1_4"], | ||
) | ||
|
||
MixedLayer( | ||
name = "output", | ||
size = 3, | ||
active_type = "softmax", | ||
inputs = [ | ||
FullMatrixProjection("layer1_1", | ||
learning_rate=0.1), | ||
TransposedFullMatrixProjection("layer1_2", parameter_name='sharew'), | ||
FullMatrixProjection("concat"), | ||
IdentityProjection("layer1_3"), | ||
], | ||
) | ||
|
||
Layer( | ||
name = "label", | ||
type = "data", | ||
size = 1, | ||
) | ||
|
||
Layer( | ||
name = "cost", | ||
type = "multi-class-cross-entropy", | ||
inputs = ["output", "label", "weight"], | ||
) | ||
|
||
Layer( | ||
name = "cost2", | ||
type = "nce", | ||
num_classes = 3, | ||
active_type = "sigmoid", | ||
neg_sampling_dist = [0.1, 0.3, 0.6], | ||
inputs = ["layer1_2", "label", "weight"], | ||
) | ||
|
||
Evaluator( | ||
name = "error", | ||
type = "classification_error", | ||
inputs = ["output", "label", "weight"] | ||
) | ||
|
||
Inputs("input", "label", "weight") | ||
Outputs("cost", "cost2") | ||
|
||
TrainData( | ||
ProtoData( | ||
files = "dummy_list", | ||
constant_slots = [1.0], | ||
async_load_data = True, | ||
) | ||
) | ||
|
||
TestData( | ||
SimpleData( | ||
files = "trainer/tests/sample_filelist.txt", | ||
feat_dim = 3, | ||
context_len = 0, | ||
buffer_capacity = 1000000, | ||
async_load_data = False, | ||
), | ||
) | ||
|
||
Settings( | ||
algorithm = "sgd", | ||
num_batches_per_send_parameter = 1, | ||
num_batches_per_get_parameter = 1, | ||
batch_size = 100, | ||
learning_rate = 0.001, | ||
learning_rate_decay_a = 1e-5, | ||
learning_rate_decay_b = 0.5, | ||
) | ||
from paddle.trainer_config_helpers import * | ||
|
||
TrainData(ProtoData( | ||
files = "dummy_list", | ||
constant_slots = [1.0], | ||
async_load_data = True)) | ||
|
||
TestData(SimpleData( | ||
files = "trainer/tests/sample_filelist.txt", | ||
feat_dim = 3, | ||
context_len = 0, | ||
buffer_capacity = 1000000, | ||
async_load_data = False)) | ||
|
||
settings(batch_size = 100) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. If this config is not used in training, the settings is ok in this way. |
||
|
||
data = data_layer(name='input', size=3) | ||
|
||
wt = data_layer(name='weight', size=1) | ||
|
||
fc1 = fc_layer(input=data, size=5, | ||
bias_attr=True, | ||
act=SigmoidActivation()) | ||
|
||
fc2 = fc_layer(input=data, size=12, | ||
bias_attr=True, | ||
param_attr=ParamAttr(name='sharew'), | ||
act=LinearActivation()) | ||
|
||
fc3 = fc_layer(input=data, size=3, | ||
bias_attr=True, | ||
act=TanhActivation()) | ||
|
||
fc4 = fc_layer(input=data, size=5, | ||
bias_attr=True, | ||
layer_attr=ExtraAttr(drop_rate=0.5), | ||
act=SquareActivation()) | ||
|
||
pool = img_pool_layer(input=fc2, | ||
pool_size=2, | ||
pool_size_y=3, | ||
num_channels=1, | ||
padding=1, | ||
padding_y=2, | ||
stride=2, | ||
stride_y=3, | ||
img_width=3, | ||
pool_type=CudnnAvgPooling()) | ||
|
||
concat = concat_layer(input=[fc3, fc4]) | ||
|
||
with mixed_layer(size=3, act=SoftmaxActivation()) as output: | ||
output += full_matrix_projection(input=fc1) | ||
output += trans_full_matrix_projection(input=fc2, | ||
param_attr=ParamAttr(name='sharew')) | ||
output += full_matrix_projection(input=concat) | ||
output += identity_projection(input=fc3) | ||
|
||
lbl = data_layer(name='label', size=1) | ||
|
||
cost = classification_cost(input=output, label=lbl, weight=wt, | ||
layer_attr=ExtraAttr(device=-1)) | ||
|
||
nce = nce_layer(input=fc2, label=lbl, weight=wt, | ||
num_classes=3, | ||
neg_distribution=[0.1, 0.3, 0.6]) | ||
|
||
outputs(cost, nce) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -50,6 +50,7 @@ | |
'slope_intercept_layer', 'trans_full_matrix_projection', | ||
'linear_comb_layer', | ||
'convex_comb_layer', 'ctc_layer', 'crf_layer', 'crf_decoding_layer', | ||
'nce_layer', | ||
'cross_entropy_with_selfnorm', 'cross_entropy', | ||
'multi_binary_label_cross_entropy', | ||
'rank_cost', 'lambda_cost', 'huber_cost', | ||
|
@@ -115,6 +116,7 @@ class LayerType(object): | |
CTC_LAYER = "ctc" | ||
CRF_LAYER = "crf" | ||
CRF_DECODING_LAYER = "crf_decoding" | ||
NCE_LAYER = 'nce' | ||
|
||
RANK_COST = "rank-cost" | ||
LAMBDA_COST = "lambda_cost" | ||
|
@@ -168,7 +170,7 @@ class LayerOutput(object): | |
:param activation: Layer Activation. | ||
:type activation: BaseActivation. | ||
:param parents: Layer's parents. | ||
:type parents: list|tuple|collection.Sequence | ||
:type parents: list|tuple|collections.Sequence | ||
""" | ||
|
||
def __init__(self, name, layer_type, parents=None, activation=None, | ||
|
@@ -1988,10 +1990,16 @@ def concat_layer(input, act=None, name=None, layer_attr=None): | |
Concat all input vector into one huge vector. | ||
Inputs can be list of LayerOutput or list of projection. | ||
|
||
The example usage is: | ||
|
||
.. code-block:: python | ||
|
||
concat = concat_layer(input=[layer1, layer2]) | ||
|
||
:param name: Layer name. | ||
:type name: basestring | ||
:param input: input layers or projections | ||
:type input: list|tuple|collection.Sequence | ||
:type input: list|tuple|collections.Sequence | ||
:param act: Activation type. | ||
:type act: BaseActivation | ||
:param layer_attr: Extra Layer Attribute. | ||
|
@@ -3488,6 +3496,83 @@ def crf_decoding_layer(input, size, label=None, param_attr=None, name=None): | |
parents.append(label) | ||
return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=size) | ||
|
||
@wrap_bias_attr_default(has_bias=True) | ||
@wrap_name_default() | ||
@layer_support() | ||
def nce_layer(input, label, num_classes, weight=None, | ||
num_neg_samples=10, neg_distribution=None, | ||
name=None, bias_attr=None, layer_attr=None): | ||
""" | ||
Noise-contrastive estimation. | ||
Implements the method in the following paper: | ||
A fast and simple algorithm for training neural probabilistic language models. | ||
|
||
The example usage is: | ||
|
||
.. code-block:: python | ||
|
||
cost = nce_layer(input=layer1, label=layer2, weight=layer3, | ||
num_classes=3, neg_distribution=[0.1,0.3,0.6]) | ||
|
||
:param name: layer name | ||
:type name: basestring | ||
:param input: input layers. It could be a LayerOutput of list/tuple of LayerOutput. | ||
:type input: LayerOutput|list|tuple|collections.Sequence | ||
:param label: label layer | ||
:type label: LayerOutput | ||
:param weight: weight layer, can be None(default) | ||
:type weight: LayerOutput | ||
:param num_classes: number of classes. | ||
:type num_classes: int | ||
:param num_neg_samples: number of negative samples. Default is 10. | ||
:type num_neg_samples: int | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. The argument |
||
:param neg_distribution: The distribution for generating the random negative labels. | ||
A uniform distribution will be used if not provided. | ||
If not None, its length must be equal to num_classes. | ||
:type neg_distribution: list|tuple|collections.Sequence|None | ||
:param bias_attr: Bias parameter attribute. True if no bias. | ||
:type bias_attr: ParameterAttribute|None|False | ||
:param layer_attr: Extra Layer Attribute. | ||
:type layer_attr: ExtraLayerAttribute | ||
:return: layer name. | ||
:rtype: LayerOutput | ||
""" | ||
if isinstance(input, LayerOutput): | ||
input = [input] | ||
assert isinstance(input, collections.Sequence) | ||
assert isinstance(label, LayerOutput) | ||
assert label.layer_type == LayerType.DATA | ||
if neg_distribution is not None: | ||
assert isinstance(neg_distribution, collections.Sequence) | ||
assert len(neg_distribution) == num_classes | ||
assert sum(neg_distribution) == 1 | ||
|
||
ipts_for_layer = [] | ||
parents = [] | ||
for each_input in input: | ||
assert isinstance(each_input, LayerOutput) | ||
ipts_for_layer.append(each_input.name) | ||
parents.append(each_input) | ||
ipts_for_layer.append(label.name) | ||
parents.append(label) | ||
|
||
if weight is not None: | ||
assert isinstance(weight, LayerOutput) | ||
assert weight.layer_type == LayerType.DATA | ||
ipts_for_layer.append(weight.name) | ||
parents.append(weight) | ||
|
||
Layer( | ||
name=name, | ||
type=LayerType.NCE_LAYER, | ||
num_classes=num_classes, | ||
neg_sampling_dist=neg_distribution, | ||
num_neg_samples=num_neg_samples, | ||
inputs=ipts_for_layer, | ||
bias=ParamAttr.to_bias(bias_attr), | ||
**ExtraLayerAttribute.to_kwargs(layer_attr) | ||
) | ||
return LayerOutput(name, LayerType.NCE_LAYER, parents=parents) | ||
|
||
""" | ||
following are cost Layers. | ||
|
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
TrainData and TestData can be kept the same as the original.