Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support variable-dimension input feature for 2D convolution operation. #2215

Merged
merged 7 commits into from
May 26, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 30 additions & 1 deletion paddle/py_paddle/dataprovider_converter.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
import swig_paddle
import numpy
import itertools
from functools import reduce

__all__ = ['DataProviderConverter']

Expand Down Expand Up @@ -65,6 +66,8 @@ def finish_pre_scan(self, argument):

:param argument: Output arguments object.
:type argument: swig_paddle.Arguments
:param dat: Output arguments object.
:type dat: The Python object, numpy.array or List.
:return:
"""
pass
Expand Down Expand Up @@ -95,17 +98,35 @@ class DenseScanner(IScanner):
def __init__(self, input_type, pos):
IScanner.__init__(self, input_type, pos)
self.__mat__ = None
self.__shape__ = None
self.__height__ = 0
self.__dim__ = 0

def pre_scan(self, dat):
self.__height__ += 1
if self.__shape__ is None:
self.__shape__ = numpy.array(dat).shape
if len(self.__shape__) > 3:
raise ValueError(
"The dimension of input cannot be greater than 3.")
self.__dim__ = reduce(lambda x, y: x * y, self.__shape__)
if len(self.__shape__) == 1 and self.__dim__ != self.input_type.dim:
raise ValueError(
"The data size must be equal to it in data layer.")
else:
if self.__shape__ != numpy.array(dat).shape:
raise ValueError(
"The data shape must be same in one mini-batch.")

def finish_pre_scan(self, argument):
self.__mat__ = numpy.ndarray(
shape=(self.__height__, self.input_type.dim), dtype=numpy.float32)
shape=(self.__height__, self.__dim__), dtype=numpy.float32)
self.__height__ = 0

def scan(self, dat):
# It's better to use NumPy array for speed.
dat = numpy.array(dat)
dat = dat.flatten()
self.__mat__[self.__height__] = dat
self.__height__ += 1

Expand All @@ -116,6 +137,14 @@ def finish_scan(self, argument):
m = swig_paddle.Matrix.createDenseFromNumpy(self.__mat__, True,
self.data_in_gpu)
argument.setSlotValue(self.pos, m)
if len(self.__shape__) > 1:
# The last-two dimenstions are the frame height and width.
# For example, the layout is CHW for 3-D feature of image.
# The H and W are the fram height and width.
h, w = self.__shape__[-2:]
argument.setSlotFrameHeight(self.pos, h)
argument.setSlotFrameWidth(self.pos, w)
self.__shape__ = None


class SparseBinaryScanner(IScanner):
Expand Down
17 changes: 14 additions & 3 deletions python/paddle/trainer/PyDataProvider2.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,9 +72,16 @@ def __init__(self, dim, seq_type, tp):

def dense_slot(dim, seq_type=SequenceType.NO_SEQUENCE):
"""
Dense Vector. It means the input feature is dense float vector. For example,
if the input is an image with 28*28 pixels, the input of Paddle neural
network should be a dense vector with dimension 784.
Dense Array. It means the input feature is dense array with float type.
For example, if the input is an image with 28*28 pixels, the input of
Paddle neural network could be a dense vector with dimension 784 or a
numpy array with shape (28, 28).

For the 2-D convolution operation, each sample in one mini-batch must have
the similarly size in PaddlePaddle now. But, it supports variable-dimension
feature across mini-batch. For the variable-dimension, the param dim is not
used. While the data reader must yield numpy array and the data feeder will
set the data shape correctly.

:param dim: dimension of this vector.
:type dim: int
Expand Down Expand Up @@ -135,6 +142,10 @@ def index_slot(value_range, seq_type=SequenceType.NO_SEQUENCE):
sparse_vector = sparse_value_slot
integer_value = index_slot

# dense_array can be used for variable-length input feature.
# Each feature is not a vector, but a multi-dimensional array.
dense_array = dense_slot


def dense_vector_sequence(dim):
"""
Expand Down
3 changes: 2 additions & 1 deletion python/paddle/v2/data_type.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,8 @@

import_list = [
nm for nm in dir(pydp2)
if '_' in nm and nm[0] != '_' and ('value' in nm or 'vector' in nm)
if '_' in nm and nm[0] != '_' and ('value' in nm or 'vector' in nm or
'array' in nm)
]
import_list.extend(['InputType'])

Expand Down
24 changes: 24 additions & 0 deletions python/paddle/v2/tests/test_data_feeder.py
Original file line number Diff line number Diff line change
Expand Up @@ -233,6 +233,30 @@ def test_multiple_features_tuple(self):
self.assertEqual(out_sparse.getSparseRowCols(i), data[i][1])
self.assertEqual(out_index[i], data[i][0])

def test_dense_set_shape(self):
# test 2-D data
def gen_data(batch_size, shape):
data = []
for i in xrange(batch_size):
each_sample = []
each_sample.append(np.random.random(shape))
data.append(each_sample)
return data

feeder = DataFeeder([('image', data_type.dense_array(2352))],
{'image': 0})
arg = feeder(gen_data(32, (3, 28, 28)))
h = arg.getSlotFrameHeight(0)
w = arg.getSlotFrameWidth(0)
self.assertEqual(h, 28)
self.assertEqual(w, 28)

arg = feeder(gen_data(32, (3, 30, 32)))
h = arg.getSlotFrameHeight(0)
w = arg.getSlotFrameWidth(0)
self.assertEqual(h, 30)
self.assertEqual(w, 32)


if __name__ == '__main__':
api.initPaddle("--use_gpu=0")
Expand Down