Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add gather_op xpu, test=kunlun #27822

Merged
merged 4 commits into from
Oct 13, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
153 changes: 153 additions & 0 deletions paddle/fluid/operators/gather_op_xpu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,153 @@
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/gather_op.h"
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/op_version_registry.h"
namespace paddle {
namespace operators {

template <typename T>
class GatherOpXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
PADDLE_ENFORCE_EQ(
platform::is_xpu_place(ctx.GetPlace()), true,
platform::errors::PreconditionNotMet("This kernel only runs on XPU."));

auto *x = ctx.Input<Tensor>("X");
auto *index = ctx.Input<Tensor>("Index");
auto *output = ctx.Output<Tensor>("Out");
if (ctx.HasInput("Axis")) {
PADDLE_THROW(platform::errors::InvalidArgument(
"Now, it doesn't support XPU with Axis."));
}

output->mutable_data<T>(ctx.GetPlace());
if (x->numel() == 0) return;
// check index type is INT32
const auto &index_type = index->type();
bool index_type_match = index_type == framework::proto::VarType::INT32;
PADDLE_ENFORCE_EQ(
index_type_match, true,
platform::errors::InvalidArgument(
"XPU only support INT32, it holds %s, but desires to be %s",
paddle::framework::DataTypeToString(index_type),
paddle::framework::DataTypeToString(
framework::proto::VarType::INT32)));

const auto index_dims = index->dims();
if (index_dims.size() == 2) {
PADDLE_ENFORCE_EQ(
index_dims[1], 1,
platform::errors::InvalidArgument(
"The last dim of index should be 1 when it is 2D, but we get %d",
index_dims[1]));
} else {
PADDLE_ENFORCE_EQ(
index_dims.size(), 1,
platform::errors::InvalidArgument(
"The index should be 1D, when it is not 2D, but we get %d",
index_dims.size()));
}
int slice_size = x->numel() / x->dims()[0];
auto &dev_ctx = ctx.template device_context<platform::XPUDeviceContext>();
int r =
xpu::gather<T>(dev_ctx.x_context(), x->data<T>(), index->data<int>(),
index->dims()[0], slice_size, output->data<T>());
PADDLE_ENFORCE_EQ(
r, xpu::Error_t::SUCCESS,
platform::errors::External("XPU kernel error! error code=%d", r));
}
};

template <typename T>
class GatherGradOpXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
PADDLE_ENFORCE_EQ(
platform::is_xpu_place(ctx.GetPlace()), true,
platform::errors::PreconditionNotMet("This kernel only runs on XPU."));

auto *index = ctx.Input<Tensor>("Index");
auto *dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto *dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto &dev_ctx = ctx.template device_context<platform::XPUDeviceContext>();

if (ctx.HasInput("Axis")) {
PADDLE_THROW(platform::errors::InvalidArgument(
"Now, it doesn't support XPU with Axis."));
}

dx->mutable_data<T>(ctx.GetPlace());
const int zero = 0;
int r_dx = xpu::memset(dev_ctx.x_context(), dx->data<T>(), zero,
dx->numel() * sizeof(T));
PADDLE_ENFORCE_EQ(
r_dx, xpu::Error_t::SUCCESS,
platform::errors::External("XPU kernel error! error code=%d", r_dx));

if (dout->numel() == 0) {
return;
}
bool overwrite = ctx.Attr<bool>("overwrite");
// check index type is INT32
const auto &index_type = index->type();
bool index_type_match = index_type == framework::proto::VarType::INT32;
PADDLE_ENFORCE_EQ(
index_type_match, true,
platform::errors::InvalidArgument(
"XPU only support INT32, it holds %s, but desires to be %s",
paddle::framework::DataTypeToString(index_type),
paddle::framework::DataTypeToString(
framework::proto::VarType::INT32)));

const auto index_dims = index->dims();
if (index_dims.size() == 2) {
PADDLE_ENFORCE_EQ(
index_dims[1], 1,
platform::errors::InvalidArgument(
"The last dim of index should be 1 when it is 2D, but we get %d",
index_dims[1]));
} else {
PADDLE_ENFORCE_EQ(
index_dims.size(), 1,
platform::errors::InvalidArgument(
"The index should be 1D, when it is not 2D, but we get %d",
index_dims.size()));
}

int index_size = index_dims[0];
int slice_size = dout->numel() / dout->dims()[0];

int r = xpu::scatter<T>(dev_ctx.x_context(), dout->data<T>(),
index->data<int>(), index_size, slice_size,
dx->data<T>(), overwrite);
PADDLE_ENFORCE_EQ(
r, xpu::Error_t::SUCCESS,
platform::errors::External("XPU kernel error! error code=%d", r));
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(gather, ops::GatherOpXPUKernel<float>);
REGISTER_OP_XPU_KERNEL(gather_grad, ops::GatherGradOpXPUKernel<float>);
#endif
154 changes: 154 additions & 0 deletions python/paddle/fluid/tests/unittests/xpu/test_gather_op_xpu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,154 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import sys
sys.path.append("..")
import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid as fluid


def gather_numpy(x, index, axis):
x_transpose = np.swapaxes(x, 0, axis)
tmp_gather = x_transpose[index, ...]
gather = np.swapaxes(tmp_gather, 0, axis)
return gather


class TestGatherOp(OpTest):
def setUp(self):
self.op_type = "gather"
self.config()
xnp = np.random.random(self.x_shape).astype(self.x_type)
self.inputs = {
'X': xnp,
'Index': np.array(self.index).astype(self.index_type)
}
self.outputs = {'Out': self.inputs["X"][self.inputs["Index"]]}

def test_check_output(self):
self.check_output()

def test_check_grad(self):
self.check_grad(['X'], 'Out')

def config(self):
"""
For multi-dimension input
"""
self.x_shape = (10, 20)
self.x_type = "float64"
self.index = [1, 3, 5]
self.index_type = "int32"


class TestXPUGatherOp(OpTest):
def setUp(self):
self.op_type = "gather"
self.dtype = np.float32
self.attrs = {'use_xpu': True}

self.config()
xnp = np.random.random(self.x_shape).astype(self.x_type)
self.inputs = {
'X': xnp,
'Index': np.array(self.index).astype(self.index_type)
}
self.outputs = {'Out': self.inputs["X"][self.inputs["Index"]]}

def test_check_output(self):
if self.dtype == np.float32 and paddle.is_compiled_with_xpu():
place = paddle.XPUPlace(0)
self.check_output_with_place(place)

def test_check_grad(self):
if self.dtype == np.float32 and paddle.is_compiled_with_xpu():
place = paddle.XPUPlace(0)
self.check_grad_with_place(place, ['X'], 'Out')

def config(self):
"""
For multi-dimension input
"""
self.x_shape = (10, 20)
self.x_type = self.dtype
self.index = [1, 3, 5]
self.index_type = "int32"


class TestCase1(TestXPUGatherOp):
def config(self):
"""
For one dimension input
"""
self.x_shape = (100)
self.x_type = "float32"
self.index = [1, 3, 5]
self.index_type = "int32"


class TestCase2(TestXPUGatherOp):
def config(self):
"""
For int64_t index type
"""
self.x_shape = (100)
self.x_type = "float32"
self.index = [1, 3, 5]
self.index_type = "int32"


class TestCase3(TestXPUGatherOp):
def config(self):
"""
For other input type
"""
self.x_shape = (10, 20)
self.x_type = "float32"
self.index = [1, 3, 5]
self.index_type = "int32"


class TestCase4(TestXPUGatherOp):
def config(self):
self.x_shape = (10, 20)
self.attrs = {'use_xpu': True, 'overwrite': False}
self.x_type = "float32"
self.index = [1, 1]
self.index_type = "int32"


class TestCase5(TestXPUGatherOp):
def config(self):
self.x_shape = (10, 20)
self.attrs = {'use_xpu': True, 'overwrite': False}
self.x_type = "float32"
self.index = [1, 1, 3]
self.index_type = "int32"


class TestCase6(TestXPUGatherOp):
def config(self):
self.x_shape = (10, 20)
self.attrs = {'use_xpu': True, 'overwrite': True}
self.x_type = "float32"
self.index = [1, 3]
self.index_type = "int32"


if __name__ == "__main__":
unittest.main()