Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add switch order layer for FCN model #2788

Merged
merged 16 commits into from
Sep 7, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions paddle/function/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,7 @@ if(WITH_GPU)
add_simple_unittest(RowConvOpTest)
add_simple_unittest(BlockExpandOpTest)
add_simple_unittest(CropOpTest)
add_simple_unittest(SwitchOpTest)
endif()

add_simple_unittest(Im2ColTest)
Expand Down
140 changes: 140 additions & 0 deletions paddle/function/SwitchOp.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,140 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "SwitchOp.h"
#include "paddle/math/Vector.h"

namespace paddle {

template <>
void NCHW2NHWC<DEVICE_TYPE_CPU>(real* outputs,
const real* inputs,
const int num,
const int inC,
const int inH,
const int inW,
const int argType) {
for (int n = 0; n < num; ++n) {
for (int c = 0; c < inC; ++c) {
for (int h = 0; h < inH; ++h) {
for (int w = 0; w < inW; ++w) {
if (argType == ADD_TO) {
outputs[((n * inH + h) * inW + w) * inC + c] += *(inputs++);
} else {
outputs[((n * inH + h) * inW + w) * inC + c] = *(inputs++);
}
}
}
}
}
}

template <>
void NHWC2NCHW<DEVICE_TYPE_CPU>(real* outputs,
const real* inputs,
const int num,
const int inH,
const int inW,
const int inC,
const int argType) {
for (int n = 0; n < num; ++n) {
for (int h = 0; h < inH; ++h) {
for (int w = 0; w < inW; ++w) {
for (int c = 0; c < inC; ++c) {
if (argType == ADD_TO) {
outputs[((n * inC + c) * inH + h) * inW + w] += *(inputs++);
} else {
outputs[((n * inC + c) * inH + h) * inW + w] = *(inputs++);
}
}
}
}
}
}

/**
* \brief Switch dimension order of image input.
* The input and output is a 4D tensor. Switch order
* 'batch_size,channels, height, width' to
* order 'batch_size, height, width, channels'.
*
* Argument in this Function:
* \param inputs input data with order 'batch_size,channels, height, width'.
* \param outputs output data with order 'batch_size, height, width, channels'.
*/
template <DeviceType Device>
class NCHW2NHWCFunc : public FunctionBase {
public:
void init(const FuncConfig& config) override {}

void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
CHECK_EQ(1UL, inputs.size());
CHECK_EQ(1UL, outputs.size());

size_t num = inputs[0].shape()[0];
size_t inC = inputs[0].shape()[1];
size_t inH = inputs[0].shape()[2];
size_t inW = inputs[0].shape()[3];
NCHW2NHWC<Device>(outputs[0].data<real>(),
inputs[0].data<real>(),
num,
inC,
inH,
inW,
outputs[0].getArgType());
}
};

/**
* \brief Switch dimension order of image input.
* The input and output is a 4D tensor. Switch order
* 'batch_size, height, width, channels' to
* order 'batch_size, channels, height, width'.
*
* Argument in this Function:
* \param inputs input data with order 'batch_size, height, width, channels'.
* \param outputs output data with order 'batch_size, channels, height, width'.
*/
template <DeviceType Device>
class NHWC2NCHWFunc : public FunctionBase {
public:
void init(const FuncConfig& config) override {}

void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
CHECK_EQ(1UL, inputs.size());
CHECK_EQ(1UL, outputs.size());

size_t num = inputs[0].shape()[0];
size_t inH = inputs[0].shape()[1];
size_t inW = inputs[0].shape()[2];
size_t inC = inputs[0].shape()[3];

NHWC2NCHW<Device>(outputs[0].data<real>(),
inputs[0].data<real>(),
num,
inH,
inW,
inC,
outputs[0].getArgType());
}
};

REGISTER_TYPED_FUNC(NCHW2NHWC, CPU, NCHW2NHWCFunc);
REGISTER_TYPED_FUNC(NHWC2NCHW, CPU, NHWC2NCHWFunc);
#ifndef PADDLE_ONLY_CPU
REGISTER_TYPED_FUNC(NCHW2NHWC, GPU, NCHW2NHWCFunc);
REGISTER_TYPED_FUNC(NHWC2NCHW, GPU, NHWC2NCHWFunc);
#endif

} // namespace paddle
66 changes: 66 additions & 0 deletions paddle/function/SwitchOp.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "Function.h"

namespace paddle {

/**
* \brief This funtion switch dimension order of image input.
* The input and output is a 4D tensor. Switch order 'batch_size,
*channels, height, width' to
* order 'batch_size, height, width, channels'.
*
* \param[out] outputs save results.
* \param[in] inputs input data.
* \param[in] num batch size of input data.
* \param[in] inC channel number of input data.
* \param[in] inH height of input data.
* \param[in] inH with of input data.
* \param[in] argType type of output argument.
*/
template <DeviceType Device>
void NCHW2NHWC(real* outputs,
const real* inputs,
const int num,
const int inC,
const int inH,
const int inW,
const int argtype);

/**
* \brief This funtion switch dimension order of image input.
* The input and output is a 4D tensor. Switch order 'batch_size,
*height, width, channels' to
* order 'batch_size, channels, height, width'.
*
* \param[out] inGrad gradients of previous layer.
* \param[in] outGrad output gradients.
* \param[in] num batch size of input data.
* \param[in] inH height of input data.
* \param[in] inW with of input data.
* \param[in] inC channel number of input data.
* \param[in] argType type of output argument.
*/
template <DeviceType Device>
void NHWC2NCHW(real* inGrad,
const real* outGrad,
const int num,
const int inH,
const int inW,
const int inC,
const int argType);
} // namespace paddle
98 changes: 98 additions & 0 deletions paddle/function/SwitchOpGpu.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
/* Copyright (c) 2016 Paddle

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "SwitchOp.h"
#include "hl_base.h"

namespace paddle {

__global__ void KeNCHW2NHWC(real* outputs,
const real* inputs,
int inC,
int inH,
int inW,
int nthreads,
int argType) {
const int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < nthreads) {
const int w = idx % inW;
const int h = (idx / inW) % inH;
const int c = (idx / inW / inH) % inC;
const int n = idx / inW / inH / inC;

const int off = ((n * inH + h) * inW + w) * inC + c;
if (argType == ADD_TO) {
outputs[off] += inputs[idx];
} else {
outputs[off] = inputs[idx];
}
}
}

template <>
void NCHW2NHWC<DEVICE_TYPE_GPU>(real* outputs,
const real* inputs,
const int num,
const int inC,
const int inH,
const int inW,
const int argType) {
size_t nth = num * inC * inH * inW;
int blockSize = 1024;
int gridSize = (nth + 1024 - 1) / 1024;
KeNCHW2NHWC<<<gridSize, blockSize, 0, STREAM_DEFAULT>>>(
outputs, inputs, inC, inH, inW, nth, argType);
CHECK_SYNC("NCHW2NHWC");
}

__global__ void KeNHWC2NCHW(real* outputs,
const real* inputs,
int inH,
int inW,
int inC,
int nthreads,
int argType) {
const int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < nthreads) {
const int c = idx % inC;
const int w = (idx / inC) % inW;
const int h = (idx / inC / inW) % inH;
const int n = idx / inW / inH / inC;

const int off = ((n * inC + c) * inH + h) * inW + w;
if (argType == ADD_TO) {
outputs[off] += inputs[idx];
} else {
outputs[off] = inputs[idx];
}
}
}

template <>
void NHWC2NCHW<DEVICE_TYPE_GPU>(real* outputs,
const real* inputs,
const int num,
const int inH,
const int inW,
const int inC,
const int argType) {
int nth = num * inC * inH * inW;
int blockSize = 1024;
int gridSize = (nth + 1024 - 1) / 1024;
KeNHWC2NCHW<<<gridSize, blockSize, 0, STREAM_DEFAULT>>>(
outputs, inputs, inH, inW, inC, nth, argType);
CHECK_SYNC("NHWC2NCHW");
}

} // namespace paddle
44 changes: 44 additions & 0 deletions paddle/function/SwitchOpTest.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include "FunctionTest.h"

namespace paddle {

TEST(Pad, real) {
for (size_t numSamples : {1, 4, 8, 16}) {
for (size_t channels : {1, 4, 8, 16}) {
for (size_t imgSizeH : {1, 4, 8, 16}) {
for (size_t imgSizeW : {1, 4, 8, 16}) {
VLOG(3) << " numSamples=" << numSamples << " channels=" << channels
<< " imgSizeH=" << imgSizeH << " imgSizeW=" << imgSizeW;
for (bool test_grad : {true, false}) {
CpuGpuFuncCompare compare(test_grad ? "NHWC2NCHW" : "NCHW2NHWC",
FuncConfig());
TensorShape inDims{numSamples, channels, imgSizeH, imgSizeW};
TensorShape outDims{numSamples, imgSizeH, imgSizeW, channels};
compare.addInputs(
BufferArg(VALUE_TYPE_FLOAT, test_grad ? outDims : inDims));
compare.addOutputs(BufferArg(
VALUE_TYPE_FLOAT, test_grad ? inDims : outDims, ASSIGN_TO));
compare.run();
}
}
}
}
}
}

} // namespace paddle
Loading