Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[NPU] Support npu kernel for op elementwise_floordiv #31822

Merged
merged 2 commits into from
Mar 24, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
37 changes: 17 additions & 20 deletions paddle/fluid/operators/elementwise/elementwise_div_op_npu.cc
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PADDLE_WITH_ASCEND_CL
#include <memory>
#include <string>

Expand Down Expand Up @@ -61,46 +60,47 @@ class ElementwiseDivGradNPUKernel : public framework::OpKernel<T> {
auto place = ctx.GetPlace();

auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();

Tensor y_power(y->type());
y_power.mutable_data<T>(y->dims(), place);
auto y_power_runner = NpuOpRunner("Power", {*y},
{y_power}, {{"power", static_cast<float>(-1)}});
auto y_power_runner = NpuOpRunner("Power", {*y}, {y_power},
{{"power", static_cast<float>(-1)}});
y_power_runner.Run(stream);

if (dx) {
dx->mutable_data<T>(place);

Tensor tensor_zeros(x->type());
tensor_zeros.mutable_data<T>(x->dims(), place);
auto tensor_zeros_runner = NpuOpRunner("ZerosLike", {*x},
{tensor_zeros}, {});
auto tensor_zeros_runner =
NpuOpRunner("ZerosLike", {*x}, {tensor_zeros}, {});
tensor_zeros_runner.Run(stream);

Tensor x_zero(paddle::framework::proto::VarType::BOOL);
x_zero.mutable_data<bool>(x->dims(), place);
auto x_zero_runner = NpuOpRunner("Equal", {*x, tensor_zeros},
{x_zero}, {});
auto x_zero_runner =
NpuOpRunner("Equal", {*x, tensor_zeros}, {x_zero}, {});
x_zero_runner.Run(stream);

Tensor x_nozero(paddle::framework::proto::VarType::BOOL);
x_nozero.mutable_data<bool>(x->dims(), place);
auto x_nozero_runner = NpuOpRunner("LogicalNot", {x_zero},
{x_nozero}, {});
auto x_nozero_runner =
NpuOpRunner("LogicalNot", {x_zero}, {x_nozero}, {});
x_nozero_runner.Run(stream);

Tensor x_nozero_f(x->type());
x_nozero_f.mutable_data<T>(x->dims(), place);
auto x_nozero_f_runner = NpuOpRunner("Cast", {x_nozero},
{x_nozero_f}, {{"dst_type", static_cast<int32_t>(0)}});
auto x_nozero_f_runner =
NpuOpRunner("Cast", {x_nozero}, {x_nozero_f},
{{"dst_type", static_cast<int32_t>(0)}});
x_nozero_f_runner.Run(stream);

Tensor x_grad_w(x->type());
x_grad_w.mutable_data<T>(x->dims(), place);
auto x_grad_w_runner = NpuOpRunner("Mul", {x_nozero_f, y_power},
{x_grad_w}, {});
auto x_grad_w_runner =
NpuOpRunner("Mul", {x_nozero_f, y_power}, {x_grad_w}, {});
x_grad_w_runner.Run(stream);

auto x_grad_runner = NpuOpRunner("Mul", {x_grad_w, *dout}, {*dx}, {});
Expand All @@ -112,14 +112,12 @@ class ElementwiseDivGradNPUKernel : public framework::OpKernel<T> {

Tensor neg_out(y->type());
neg_out.mutable_data<T>(y->dims(), place);
auto neg_out_runner = NpuOpRunner("Neg", {*out},
{neg_out}, {});
auto neg_out_runner = NpuOpRunner("Neg", {*out}, {neg_out}, {});
neg_out_runner.Run(stream);

Tensor y_grad_w(y->type());
y_grad_w.mutable_data<T>(y->dims(), place);
auto y_grad_w_runner = NpuOpRunner("Div", {neg_out, *y},
{y_grad_w}, {});
auto y_grad_w_runner = NpuOpRunner("Div", {neg_out, *y}, {y_grad_w}, {});
y_grad_w_runner.Run(stream);

auto y_grad_runner = NpuOpRunner("Mul", {y_grad_w, *dout}, {*dy}, {});
Expand All @@ -143,4 +141,3 @@ REGISTER_OP_NPU_KERNEL(
ops::ElementwiseDivGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::ElementwiseDivGradNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
#endif
52 changes: 52 additions & 0 deletions paddle/fluid/operators/elementwise/elementwise_floordiv_op_npu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>

#include "paddle/fluid/operators/elementwise/elementwise_div_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
class ElementwiseFloorDivNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* out = ctx.Output<Tensor>("Out");

out->mutable_data<T>(ctx.GetPlace());

auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();

auto runner = NpuOpRunner("FloorDiv", {*x, *y}, {*out}, {});
runner.Run(stream);
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(elementwise_floordiv,
ops::ElementwiseFloorDivNPUKernel<int>,
ops::ElementwiseFloorDivNPUKernel<int64_t>);
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle

paddle.enable_static()


@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestElementwiseFloorDiv(OpTest):
def setUp(self):
self.op_type = "elementwise_floordiv"
self.set_npu()
self.init_dtype()
self.init_input_output()

self.inputs = {
'X': OpTest.np_dtype_to_fluid_dtype(self.x),
'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
}
self.attrs = {}
self.outputs = {'Out': self.out}

def set_npu(self):
self.__class__.use_npu = True
self.place = paddle.NPUPlace(0)

def init_input_output(self):
self.x = np.random.uniform(1, 1000, [10, 10]).astype(self.dtype)
self.y = np.random.uniform(1, 1000, [10, 10]).astype(self.dtype)
self.out = np.floor_divide(self.x, self.y)

def init_dtype(self):
self.dtype = "int64"

def test_check_output(self):
self.check_output_with_place(self.place, check_dygraph=False)


@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestElementwiseFloorDiv2(TestElementwiseFloorDiv):
def init_dtype(self):
self.dtype = "int32"


if __name__ == '__main__':
unittest.main()