Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add a nest sequence select layer. #3297

Merged
merged 10 commits into from
Aug 8, 2017
5 changes: 5 additions & 0 deletions doc/api/v2/config/layer.rst
Original file line number Diff line number Diff line change
Expand Up @@ -257,6 +257,11 @@ seq_concat
.. autoclass:: paddle.v2.layer.seq_concat
:noindex:

sub_nested_seq
--------------
.. autoclass:: paddle.v2.layer.sub_nested_seq
:noindex:

Reshaping Layers
================

Expand Down
176 changes: 176 additions & 0 deletions paddle/gserver/layers/SubNestedSequenceLayer.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,176 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Layer.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/Vector.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"

namespace paddle {

class SubNestedSequenceLayer : public Layer {
public:
explicit SubNestedSequenceLayer(const LayerConfig& config) : Layer(config) {}

bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;

void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;

private:
/*
* This functions generates the indices of rows in a batch according to the
* indices of selected sub-sequence in each sequence.
*
* Examples:
* selectedIndices:
* [
* [0, 1, -1],
* [0, 1, 2],
* [0, -1, -1],
* [0, 2, 3],
* ]
* inputSeqInfo:
* [
* [0,3,4],
* [4,5,7,10,15],
* [15,20],
* [20,22,23,25,28]
* ]
*
* ths output is saved to private member rowIndice_;
* [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
* 16,17,18,19,20,21,22,23,24,25,26,27]
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

55行的示例不太好,rowIndice是连续的输出,有更好的示例么?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

好的,这几个layer 都是为了做 beam training 添加的,一定会整体联调,再完善一遍注释。

*/

void calSelectedCols(const MatrixPtr selectedIndices,
const std::vector<std::vector<int>>& inputSeqInfo);

// if the second input of this layer is on GPU memory, copy it to CPU memory.
MatrixPtr selIdsCpu_;

// reorganized sequenceStartPositions and subSequenceStartPositions
// into a 2d vector to facilitate the sequence selection process.
std::vector<std::vector<int>> inputSeqInfoVec_;

// the final selected row indices in a batch,
// rowIdx_ and selectedRows_ actually share a same memory.
IVectorPtr rowIndice_;
std::vector<int> selectedRows_;
};

REGISTER_LAYER(sub_nested_seq, SubNestedSequenceLayer);

bool SubNestedSequenceLayer::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
/* Initialize the basic parent class */
Layer::init(layerMap, parameterMap);
CHECK_EQ(2U, inputLayers_.size());
setNeedSequenceInfo(false);
return true;
}

void SubNestedSequenceLayer::calSelectedCols(
const MatrixPtr selectedIndices,
const std::vector<std::vector<int>>& inputSeqInfo) {
selectedRows_.clear();

std::vector<int> outSeqStartInfo(1, 0);
std::vector<int> outSubSeqStartInfo(1, 0);

size_t seqNum = selectedIndices->getHeight();
size_t beamSize = selectedIndices->getWidth();
for (size_t i = 0; i < seqNum; ++i) {
for (size_t j = 0; j < beamSize; ++j) {
if (selectedIndices->getElement(i, j) == -1.) break;
int selSubSeqIdx = selectedIndices->getElement(i, j);
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

95行挪到96行后面:不用访问两次selectedIndices了。
if (selSubSeqIdx == -1) break;
-1后面为什么有一个.呢

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这里比较的是一个float。

CHECK_GT(inputSeqInfoVec_[i].size() - 1, selSubSeqIdx);

size_t subSeqLen = inputSeqInfoVec_[i][selSubSeqIdx + 1] -
inputSeqInfoVec_[i][selSubSeqIdx];
for (size_t k = 0; k < subSeqLen; ++k)
selectedRows_.push_back(inputSeqInfoVec_[i][selSubSeqIdx] + k);
outSubSeqStartInfo.push_back(outSubSeqStartInfo.back() + subSeqLen);
}
outSeqStartInfo.push_back(outSubSeqStartInfo.back());
}

if (useGpu_) {
rowIndice_ = IVector::create(selectedRows_.size(), useGpu_);
rowIndice_->copyFrom(selectedRows_.data(), selectedRows_.size());
} else {
rowIndice_ =
IVector::create(selectedRows_.data(), selectedRows_.size(), useGpu_);
}

// create the sequence information for the output.
ICpuGpuVector::resizeOrCreate(
output_.sequenceStartPositions, outSeqStartInfo.size(), false);
output_.sequenceStartPositions->copyFrom(
outSeqStartInfo.data(), outSeqStartInfo.size(), false);

ICpuGpuVector::resizeOrCreate(
output_.subSequenceStartPositions, outSubSeqStartInfo.size(), false);
output_.subSequenceStartPositions->copyFrom(
outSubSeqStartInfo.data(), outSubSeqStartInfo.size(), false);
}

void SubNestedSequenceLayer::forward(PassType passType) {
Layer::forward(passType);

const Argument& inputSeq = getInput(0);
CHECK(inputSeq.hasSubseq()) << "The first input of SubNestSequence layer "
<< "must be a nested sequence.";
const MatrixPtr selectedIndices = getInputValue(1);
CHECK_EQ(inputSeq.getNumSequences(), selectedIndices->getHeight());

if (dynamic_cast<GpuMatrix*>(selectedIndices.get())) {
/*
* Currently, the second input for this layer is generated by
* kmax_sequence_score_layer whose output is always stored on CPU,
* or a data_layer which canbe on GPU.
*
* If the second input is on GPU, copy it to CPU memory, because this
* input always uses very few memory, and operations related to it are
* all logic control, not computations.
*/
Matrix::resizeOrCreate(selIdsCpu_,
selectedIndices->getHeight(),
selectedIndices->getWidth(),
false /* trans */,
false /* useGpu */);
selIdsCpu_->copyFrom(*selectedIndices);
} else {
selIdsCpu_ = selectedIndices;
}
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

132-150行需要移入calSelectedCols函数么,selIdsCpu也是一个临时变量,除了在calSelectedCols里面用,其他地方没有用到。

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done.


Argument::reorganizeSeqInfo(inputSeq.sequenceStartPositions,
inputSeq.subSequenceStartPositions,
inputSeqInfoVec_);
calSelectedCols(selIdsCpu_, inputSeqInfoVec_);

resetOutput(selectedRows_.size(), getSize());
getOutputValue()->selectRows(*getInputValue(0), *rowIndice_);
}

void SubNestedSequenceLayer::backward(const UpdateCallback& callback) {
MatrixPtr inputSeqGrad = getInputGrad(0);
MatrixPtr outputGrad = getOutputGrad();

if (inputSeqGrad) outputGrad->addToRows(*inputSeqGrad, *rowIndice_);
}

} // namespace paddle
78 changes: 78 additions & 0 deletions paddle/gserver/tests/test_LayerGrad.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1899,6 +1899,84 @@ TEST(Layer, CropLayer) {
}
}

vector<real> randSampling(real range, int n) {
CHECK_GE(range, n);
vector<real> num(range);
iota(begin(num), end(num), 0.);
if (range == n) return num;

random_shuffle(begin(num), end(num));
num.resize(n);
sort(begin(num), end(num));
return num;
}

TEST(Layer, SubNestedSequenceLayer) {
// layer size is not crutial for this layer,
// so use a small layer size in unittest
const int layerSize = 4;

const int maxSeqNum = 50;
const int maxSeqLen = 50;
const int maxBeamSize = 32;

srand((size_t)(time(NULL)));
int beamSize = 1 + (rand() % maxBeamSize);

TestConfig config;
config.layerConfig.set_type("sub_nested_seq");
config.layerConfig.set_name("sub_nested_seq_layer");
config.layerConfig.set_size(layerSize);

int seqNum = 1 + (rand() % maxSeqNum);

// sequence information for the first input, it is a nested sequence
vector<int> seqStartPos(seqNum + 1, 0);
vector<int> subSeqStartPos(1, 0);

// selected indices
MatrixPtr selectedIndices = Matrix::create(seqNum, beamSize, false, false);
selectedIndices->one();
selectedIndices->mulScalar(-1.);
real* indicesData = selectedIndices->getData();

for (int i = 0; i < seqNum; ++i) {
int subSeqNum = 1 + (rand() % maxSeqNum);
for (int j = 0; j < subSeqNum; ++j) {
subSeqStartPos.push_back(subSeqStartPos.back() +
(1 + (rand() % maxSeqLen)));
}
vector<real> selSeqs =
randSampling(static_cast<real>(subSeqNum), min(beamSize, subSeqNum));
memcpy(indicesData + (i * beamSize),
selSeqs.data(),
selSeqs.size() * sizeof(real));
seqStartPos[i + 1] = subSeqStartPos.back();
}

MatrixPtr seqInputPtr =
Matrix::create(seqStartPos.back(), layerSize, false, false);
seqInputPtr->randomizeUniform();
config.inputDefs.push_back({INPUT_SELF_DEFINE_DATA,
"nested_seq_input",
seqInputPtr,
seqStartPos,
subSeqStartPos});
config.layerConfig.add_inputs();
config.inputDefs.push_back(
{INPUT_SELF_DEFINE_DATA, "selected_indices", selectedIndices});
config.layerConfig.add_inputs();

for (auto useGpu : {false, true}) {
testLayerGrad(config,
"sub_nested_seq",
/* batchSize */ seqNum,
/* trans */ false,
/* useGpu*/ useGpu,
/* useWeight */ false);
}
}

TEST(Layer, ClipLayer) {
const size_t batchSize = 128;
const size_t size = 512;
Expand Down
20 changes: 20 additions & 0 deletions paddle/parameter/Argument.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -666,4 +666,24 @@ void Argument::subArgFrom(const Argument& input,
}
}

void Argument::reorganizeSeqInfo(
const ICpuGpuVectorPtr seqStartPos,
const ICpuGpuVectorPtr subSeqStartPos,
std::vector<std::vector<int>>& reorganizedSeqInfo) {
int* seqStarts = seqStartPos->getMutableData(false);
int* subSeqStarts = subSeqStartPos->getMutableData(false);

int seqNum = seqStartPos->getSize() - 1;
reorganizedSeqInfo.resize(seqNum, std::vector<int>());
int seqIdx = 0;
for (size_t i = 0; i < subSeqStartPos->getSize(); ++i) {
reorganizedSeqInfo[seqIdx].push_back(subSeqStarts[i]);
if (subSeqStarts[i] == seqStarts[seqIdx + 1]) {
seqIdx++;
if (seqIdx == seqNum) return;
reorganizedSeqInfo[seqIdx].push_back(subSeqStarts[i]);
}
}
}

} // namespace paddle
24 changes: 24 additions & 0 deletions paddle/parameter/Argument.h
Original file line number Diff line number Diff line change
Expand Up @@ -317,6 +317,30 @@ struct Argument {
*/
void printValueString(std::ostream& stream,
const std::string& prefix = "") const;

/**
* @brief reorganizeSeqInfo will reorganize sequenceStartPositions and
* subSequenceStartPositions into a 2 dimensional arrary: reorganizedSeqInfo.
*
* @param seqStartPos: sequenceStartPositions of an Argument.
* @param subSeqStartPos: subSequenceStartPositions of an Argument.
* @param the reorganized sequence start position information.
*
* Examples:
* seqStartPos: [0, 4, 15, 20, 28]
* subSeqStartPos: [0, 3, 4, 5, 7, 10, 15, 20, 22, 23, 25, 28]
* reorganizedSeqInfo:
* [
* [0,3,4],
* [4,5,7,10,15],
* [15,20],
* [20,22,23,25,28]
* ]
*/
static void reorganizeSeqInfo(
const ICpuGpuVectorPtr seqStartPos,
const ICpuGpuVectorPtr subSeqStartPos,
std::vector<std::vector<int>>& reorganizedSeqInfo);
};

} // namespace paddle
25 changes: 25 additions & 0 deletions python/paddle/trainer/config_parser.py
Original file line number Diff line number Diff line change
Expand Up @@ -2657,6 +2657,31 @@ def __init__(self, name, inputs, bias=False, **xargs):
self.create_bias_parameter(bias, size)


@config_layer('sub_nested_seq')
class SubNestedSequenceLayer(LayerBase):
def __init__(self, name, inputs, selected_indices, bias=False, **xargs):
if isinstance(inputs, list):
assert len(inputs) == 1, ('the first input of sub_nested_seq '
'layer is a single nested sequence.')
inputs = inputs[0]
if isinstance(selected_indices, list):
assert len(selected_indices) == 1, (
'the second input of '
'sub_nested_seq layer is a single layer which is a '
'set of selected indices.')
selected_indices = selected_indices[0]

super(SubNestedSequenceLayer, self).__init__(
name,
'sub_nested_seq',
0,
inputs=[inputs, selected_indices],
**xargs)
input_layer0 = self.get_input_layer(0)
size = input_layer0.size
self.set_layer_size(size)


@config_layer('out_prod')
class OuterProdLayer(LayerBase):
def __init__(self, name, inputs, device=None):
Expand Down
Loading