Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[hybrid] Fix row parallel linear bias #35186

Merged
merged 3 commits into from
Aug 27, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
60 changes: 35 additions & 25 deletions python/paddle/distributed/collective.py
Original file line number Diff line number Diff line change
Expand Up @@ -1078,6 +1078,19 @@ def _linear(x, weight, bias=None, name=None):
return res


def _set_var_distributed(var):
if var is None:
return

var.is_distributed = True

# NOTE: use current_block and find_var_recursive to support while_loop
startup_block = paddle.static.default_startup_program().current_block()
main_block = paddle.static.default_main_program().current_block()
startup_block._find_var_recursive(var.name).is_distributed = True
main_block._find_var_recursive(var.name).is_distributed = True


def _parallel_linear(x,
num_rows,
num_cols,
Expand All @@ -1095,7 +1108,7 @@ def _parallel_linear(x,

axis the dimension of the parameter of linear layer.
axis = 0: the row dimension
axid = 1: the col dimension
axis = 1: the col dimension

"""
if group is not None and not group.is_member():
Expand All @@ -1108,40 +1121,35 @@ def _parallel_linear(x,
else:
x = _c_identity(x, group=group)

if core.is_compiled_with_npu():
linear = _Linear(
num_rows,
num_cols,
weight_attr=param_attr,
bias_attr=bias_attr,
name=name)
else:
linear = paddle.nn.Linear(
num_rows,
num_cols,
weight_attr=param_attr,
bias_attr=bias_attr,
name=name)

linear_out = linear(x)
startup_block = paddle.static.default_startup_program().current_block()
main_block = paddle.static.default_main_program().current_block()
startup_block._find_var_recursive(linear.weight.name).is_distributed = True
main_block._find_var_recursive(linear.weight.name).is_distributed = True
linear = paddle.nn.Linear(
num_rows,
num_cols,
weight_attr=param_attr,
bias_attr=bias_attr,
name=name)

# NOTE: npu linear function use matmul_v2 but linear use matmul
linear_function = _linear if core.is_compiled_with_npu()\
else paddle.nn.functional.linear
linear_out = linear_function(
x,
linear.weight,
# NOTE(wangxi): row split, bias need add after allreduce
None if axis == 0 else linear.bias,
linear.name)

_set_var_distributed(linear.weight)
# set is_distributed for splited bias
# if a linear layer is splited by row, each rank would hold a complete bias and they should be the same in each rank.
# if a linear layer is splited by col, the bias would also be split into each rank as its weight
if axis == 1 and linear._bias_attr != False:
startup_block._find_var_recursive(
linear.bias.name).is_distributed = True
main_block._find_var_recursive(linear.bias.name).is_distributed = True
_set_var_distributed(linear.bias)

if not gather_out: return linear_out

op_type = 'c_allreduce_sum' if axis == 0 else 'c_concat'
out_shape = list(linear_out.shape)
out_shape[0] *= 1 if axis == 0 else nranks
main_block = paddle.static.default_main_program().current_block()
out = main_block.create_var(
shape=out_shape,
dtype=linear_out.dtype,
Expand All @@ -1160,6 +1168,8 @@ def _parallel_linear(x,
'use_calc_stream': True,
'use_model_parallel': True
})
if linear.bias is not None:
out = out + linear.bias
else:
main_block.append_op(
type='c_concat',
Expand Down
29 changes: 19 additions & 10 deletions python/paddle/fluid/tests/unittests/static_model_parallel_by_col.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,29 +43,38 @@
#fluid.default_main_program().random_seed = 1


def get_param_attr(weight, bias):
weight_attr = paddle.ParamAttr(
initializer=fluid.initializer.NumpyArrayInitializer(weight))
bias_attr = paddle.ParamAttr(
initializer=fluid.initializer.NumpyArrayInitializer(bias))
return weight_attr, bias_attr


def create_model(data, rank):
np.random.seed(2021)
np_weight = np.random.uniform(-1, 1, size=(IN_SIZE, OUT_SIZE)).astype(DTYPE)
np_bias = np.random.uniform(-1, 1, size=(OUT_SIZE, )).astype(DTYPE)
if rank is not None:
start_col = 0 if rank == 0 else OUT_SIZE // 2
np_weight_part = np_weight[:, start_col:start_col + OUT_SIZE // 2]
np_bias_part = np_bias[start_col:start_col + OUT_SIZE // 2]

weight_attr, bias_attr = get_param_attr(np_weight_part, np_bias_part)
result = paddle.distributed.split(
data,
size=(IN_SIZE, OUT_SIZE),
operation='linear',
axis=1,
num_partitions=MODEL_PARALLEL_SIZE,
weight_attr=paddle.ParamAttr(
initializer=fluid.initializer.NumpyArrayInitializer(
np_weight_part)),
bias_attr=False, )
weight_attr=weight_attr,
bias_attr=bias_attr)
else:
result = fluid.layers.fc(
data,
size=OUT_SIZE,
param_attr=paddle.ParamAttr(
initializer=fluid.initializer.NumpyArrayInitializer(np_weight)),
bias_attr=False, )
weight_attr, bias_attr = get_param_attr(np_weight, np_bias)
result = fluid.layers.fc(data,
size=OUT_SIZE,
param_attr=weight_attr,
bias_attr=bias_attr)

predict = paddle.sum(result)
return predict
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -43,29 +43,39 @@
#fluid.default_main_program().random_seed = 1


def get_param_attr(weight, bias):
weight_attr = paddle.ParamAttr(
initializer=fluid.initializer.NumpyArrayInitializer(weight))
bias_attr = paddle.ParamAttr(
initializer=fluid.initializer.NumpyArrayInitializer(bias))
return weight_attr, bias_attr


def create_model(data, rank):
np.random.seed(2021)
np_weight = np.random.uniform(-1, 1, size=(IN_SIZE, OUT_SIZE)).astype(DTYPE)
np_bias = np.random.uniform(-1, 1, size=(OUT_SIZE, )).astype(DTYPE)
if rank is not None:
start_row = 0 if rank == 0 else IN_SIZE // 2
np_weight_part = np_weight[start_row:start_row + IN_SIZE // 2, :]

weight_attr, bias_attr = get_param_attr(np_weight_part, np_bias)
result = paddle.distributed.split(
data,
size=(IN_SIZE, OUT_SIZE),
operation='linear',
axis=0,
num_partitions=MODEL_PARALLEL_SIZE,
weight_attr=paddle.ParamAttr(
initializer=fluid.initializer.NumpyArrayInitializer(
np_weight_part)),
bias_attr=False, )
weight_attr=weight_attr,
bias_attr=bias_attr)
else:
weight_attr, bias_attr = get_param_attr(np_weight, np_bias)
result = fluid.layers.fc(
data,
size=OUT_SIZE,
param_attr=paddle.ParamAttr(
initializer=fluid.initializer.NumpyArrayInitializer(np_weight)),
bias_attr=False, )
bias_attr=bias_attr)

predict = paddle.sum(result)
return predict
Expand Down