-
Notifications
You must be signed in to change notification settings - Fork 5.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
refine Huber loss, add huber_regression_cost #3571
Merged
Merged
Changes from 11 commits
Commits
Show all changes
12 commits
Select commit
Hold shift + click to select a range
e6db484
make clear that current huber_cost is for two-classification
luotao1 3321dd0
Merge branch 'develop' into huber_loss
luotao1 cbad985
Merge branch 'develop' into huber_loss
luotao1 7f9af12
Merge branch 'develop' into huber_loss
luotao1 27a99bf
Add base class for huber_regression_cost and huber_classification_cost
luotao1 3065cb2
add huber_regression_cost
luotao1 1c0a1a0
Merge branch 'develop' into huber_loss
luotao1 73ab2d4
fix backward error of huber_regression_cost
luotao1 7596191
Merge branch 'develop' into huber_loss
luotao1 acd8a22
Merge branch 'develop' into huber_loss
luotao1 e63ad0a
HuberRegressionLoss and HuberTwoClassification support multi-dimensio…
luotao1 b709af6
HuberTwoClassification only support one dimension
luotao1 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -572,13 +572,8 @@ void MultiBinaryLabelCrossEntropy::backwardImp(Matrix& output, | |
} | ||
} | ||
|
||
// | ||
// Huber loss for robust 2-classes classification | ||
// | ||
REGISTER_LAYER(huber, HuberTwoClass); | ||
|
||
bool HuberTwoClass::init(const LayerMap& layerMap, | ||
const ParameterMap& parameterMap) { | ||
bool HuberCost::init(const LayerMap& layerMap, | ||
const ParameterMap& parameterMap) { | ||
CostLayer::init(layerMap, parameterMap); | ||
if (useGpu_) { | ||
tmpCpuInput_.reserve(inputLayers_.size()); | ||
|
@@ -589,69 +584,138 @@ bool HuberTwoClass::init(const LayerMap& layerMap, | |
return true; | ||
} | ||
|
||
void HuberTwoClass::forwardImp(Matrix& output, Argument& label, Matrix& cost) { | ||
void HuberCost::forwardImp(Matrix& output, Argument& label, Matrix& cost) { | ||
if (useGpu_) { | ||
for (size_t i = 0; i < inputLayers_.size(); i++) { | ||
tmpCpuInput_[i].resizeAndCopyFrom( | ||
getInput(i), false, HPPL_STREAM_DEFAULT); | ||
} | ||
hl_stream_synchronize(HPPL_STREAM_DEFAULT); | ||
} | ||
forwardImpIn(output, label, cost); | ||
} | ||
|
||
void HuberTwoClass::forwardImpIn(Matrix& output, | ||
Argument& label, | ||
Matrix& target) { | ||
// | ||
// Huber loss for robust regression. | ||
// | ||
REGISTER_LAYER(huber_regression, HuberRegressionLoss); | ||
|
||
bool HuberRegressionLoss::init(const LayerMap& layerMap, | ||
const ParameterMap& parameterMap) { | ||
HuberCost::init(layerMap, parameterMap); | ||
delta_ = config_.delta(); | ||
return true; | ||
} | ||
|
||
void HuberRegressionLoss::forwardImp(Matrix& output, | ||
Argument& label, | ||
Matrix& target) { | ||
HuberCost::forwardImp(output, label, target); | ||
size_t numSamples = target.getHeight(); | ||
CHECK_EQ((*label.ids).getSize(), numSamples); | ||
size_t dim = output.getWidth(); | ||
CHECK(label.value); | ||
CHECK_EQ((*label.value).getHeight(), numSamples); | ||
CHECK_EQ(output.getHeight(), numSamples); | ||
CHECK_EQ(output.getWidth(), (size_t)1); | ||
CHECK_EQ(dim, (*label.value).getWidth()); | ||
CHECK_EQ(target.getWidth(), (size_t)1); | ||
|
||
real* out = useGpu_ ? tmpCpuInput_[0].value->getData() : output.getData(); | ||
int* lbl = useGpu_ ? tmpCpuInput_[1].ids->getData() : (*label.ids).getData(); | ||
std::vector<real> cost(numSamples); | ||
real* lbl = | ||
useGpu_ ? tmpCpuInput_[1].value->getData() : (*label.value).getData(); | ||
std::vector<real> cost(numSamples, 0); | ||
for (size_t i = 0; i < numSamples; ++i) { | ||
int y = 2 * lbl[i] - 1; | ||
if (out[i] * y < -1) | ||
cost[i] = -4 * out[i] * y; | ||
else if (out[i] * y < 1) | ||
cost[i] = (1 - out[i] * y) * (1 - out[i] * y); | ||
else | ||
cost[i] = 0; | ||
for (size_t j = 0; j < dim; ++j) { | ||
int index = i * dim + j; | ||
real a = std::abs(lbl[index] - out[index]); | ||
if (a <= delta_) | ||
cost[i] += a * a / 2; | ||
else | ||
cost[i] += delta_ * (a - delta_ / 2); | ||
} | ||
} | ||
target.copyFrom(cost.data(), numSamples); | ||
} | ||
|
||
void HuberTwoClass::backwardImp(Matrix& outputValue, | ||
Argument& label, | ||
Matrix& outputGrad) { | ||
if (useGpu_) { | ||
backwardImpIn( | ||
*tmpCpuInput_[0].value, tmpCpuInput_[1], *tmpCpuInput_[0].grad); | ||
outputGrad.copyFrom(*tmpCpuInput_[0].grad); | ||
} else { | ||
backwardImpIn(outputValue, label, outputGrad); | ||
void HuberRegressionLoss::backwardImp(Matrix& output, | ||
Argument& label, | ||
Matrix& outputG) { | ||
size_t numSamples = output.getHeight(); | ||
size_t dim = output.getWidth(); | ||
real* out = useGpu_ ? tmpCpuInput_[0].value->getData() : output.getData(); | ||
real* lbl = | ||
useGpu_ ? tmpCpuInput_[1].value->getData() : (*label.value).getData(); | ||
real* grad = useGpu_ ? tmpCpuInput_[0].grad->getData() : outputG.getData(); | ||
for (size_t i = 0; i < numSamples; ++i) { | ||
for (size_t j = 0; j < dim; ++j) { | ||
int index = i * dim + j; | ||
real a = lbl[index] - out[index]; | ||
if (std::abs(a) <= delta_) | ||
grad[index] += -a; | ||
else | ||
grad[index] += a > 0 ? -delta_ : delta_; | ||
} | ||
} | ||
if (useGpu_) outputG.copyFrom(grad, numSamples * dim); | ||
} | ||
|
||
void HuberTwoClass::backwardImpIn(Matrix& output, | ||
Argument& label, | ||
Matrix& outputG) { | ||
size_t numSamples = output.getHeight(); | ||
real* out = output.getData(); | ||
real* grad = outputG.getData(); | ||
int* lbl = (*label.ids).getData(); | ||
// | ||
// Huber loss for robust 2-classes classification | ||
// | ||
REGISTER_LAYER(huber_classification, HuberTwoClassification); | ||
|
||
bool HuberTwoClassification::init(const LayerMap& layerMap, | ||
const ParameterMap& parameterMap) { | ||
return HuberCost::init(layerMap, parameterMap); | ||
} | ||
|
||
void HuberTwoClassification::forwardImp(Matrix& output, | ||
Argument& label, | ||
Matrix& target) { | ||
HuberCost::forwardImp(output, label, target); | ||
size_t numSamples = target.getHeight(); | ||
size_t dim = output.getWidth(); | ||
CHECK(label.ids); | ||
CHECK_EQ((*label.ids).getSize(), numSamples); | ||
CHECK_EQ(output.getHeight(), numSamples); | ||
CHECK_EQ(target.getWidth(), (size_t)1); | ||
|
||
real* out = useGpu_ ? tmpCpuInput_[0].value->getData() : output.getData(); | ||
int* lbl = useGpu_ ? tmpCpuInput_[1].ids->getData() : (*label.ids).getData(); | ||
std::vector<real> cost(numSamples, 0); | ||
for (size_t i = 0; i < numSamples; ++i) { | ||
int y = 2 * lbl[i] - 1; | ||
if (y * out[i] < -1) | ||
grad[i] += -4 * y; | ||
else if (y * out[i] < 1) | ||
grad[i] += -2 * (1 - y * out[i]) * y; | ||
for (size_t j = 0; j < dim; ++j) { | ||
int index = i * dim + j; | ||
real a = out[index] * y; | ||
if (a < -1) | ||
cost[i] += -4 * a; | ||
else if (a < 1) | ||
cost[i] += (1 - a) * (1 - a); | ||
} | ||
} | ||
target.copyFrom(cost.data(), numSamples); | ||
} | ||
|
||
void HuberTwoClassification::backwardImp(Matrix& output, | ||
Argument& label, | ||
Matrix& outputG) { | ||
size_t numSamples = output.getHeight(); | ||
size_t dim = output.getWidth(); | ||
real* out = useGpu_ ? tmpCpuInput_[0].value->getData() : output.getData(); | ||
int* lbl = useGpu_ ? tmpCpuInput_[1].ids->getData() : (*label.ids).getData(); | ||
real* grad = useGpu_ ? tmpCpuInput_[0].grad->getData() : outputG.getData(); | ||
for (size_t i = 0; i < numSamples; ++i) { | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 同 There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Done |
||
int y = 2 * lbl[i] - 1; | ||
for (size_t j = 0; j < dim; ++j) { | ||
int index = i * dim + j; | ||
real a = out[index] * y; | ||
if (a < -1) | ||
grad[index] += -4 * y; | ||
else if (a < 1) | ||
grad[index] += -2 * (1 - a) * y; | ||
} | ||
} | ||
if (useGpu_) outputG.copyFrom(grad, numSamples * dim); | ||
} | ||
/** | ||
* This cost layer compute the sum of its input as loss. | ||
* \f[ | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Huber loss 针对分类问题的这种变种只会有一维输出,不应该出现多维。分类问题不需要修改为多维。
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Done,已经改成1维了。