Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

support p_norm and elementwise_max float16 #35888

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions paddle/fluid/operators/elementwise/elementwise_max_op.cu
Original file line number Diff line number Diff line change
Expand Up @@ -41,12 +41,16 @@ namespace ops = paddle::operators;

REGISTER_OP_CUDA_KERNEL(
elementwise_max,
ops::ElementwiseMaxKernel<paddle::platform::CUDADeviceContext,
paddle::platform::float16>,
ops::ElementwiseMaxKernel<paddle::platform::CUDADeviceContext, float>,
ops::ElementwiseMaxKernel<paddle::platform::CUDADeviceContext, double>,
ops::ElementwiseMaxKernel<paddle::platform::CUDADeviceContext, int>,
ops::ElementwiseMaxKernel<paddle::platform::CUDADeviceContext, int64_t>);
REGISTER_OP_CUDA_KERNEL(
elementwise_max_grad,
ops::ElementwiseMaxGradKernel<paddle::platform::CUDADeviceContext,
paddle::platform::float16>,
ops::ElementwiseMaxGradKernel<paddle::platform::CUDADeviceContext, float>,
ops::ElementwiseMaxGradKernel<paddle::platform::CUDADeviceContext, double>,
ops::ElementwiseMaxGradKernel<paddle::platform::CUDADeviceContext, int>,
Expand Down
4 changes: 2 additions & 2 deletions paddle/fluid/operators/elementwise/elementwise_max_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -39,14 +39,14 @@ class ElementwiseMaxKernel : public framework::OpKernel<T> {
template <typename T>
struct MaxGradDx {
HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
return dout * (x > y);
return dout * static_cast<T>(x > y);
}
};

template <typename T>
struct MaxGradDy {
HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
return dout * (x <= y);
return dout * static_cast<T>(x <= y);
}
};

Expand Down
74 changes: 48 additions & 26 deletions paddle/fluid/operators/p_norm_op.cu
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,9 @@ limitations under the License. */
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/operators/p_norm_op.h"
#include "paddle/fluid/platform/float16.h"

namespace paddle {
namespace operators {
Expand All @@ -30,12 +32,23 @@ __device__ __forceinline__ int sgn(T val) {
return (T(0) < val) - (val < T(0));
}

__device__ __forceinline__ platform::float16 inline_abs(platform::float16 x) {
return static_cast<platform::float16>(abs(static_cast<float>(x)));
}
__device__ __forceinline__ float inline_abs(float x) { return abs(x); }
__device__ __forceinline__ double inline_abs(double x) { return abs(x); }

__device__ __forceinline__ int inline_sign(platform::float16 x) {
return sgn<platform::float16>(x);
}
__device__ __forceinline__ int inline_sign(float x) { return sgn<float>(x); }
__device__ __forceinline__ int inline_sign(double x) { return sgn<double>(x); }

__device__ __forceinline__ platform::float16 inline_pow(
platform::float16 base, platform::float16 exponent) {
return static_cast<platform::float16>(
pow(static_cast<float>(base), static_cast<float>(exponent)));
}
__device__ __forceinline__ float inline_pow(float base, float exponent) {
return pow(base, exponent);
}
Expand All @@ -47,40 +60,43 @@ template <typename T, int BlockDim>
__global__ void Pnorm(const T* x, const int pre,
const int axis_n, // dim in axis
const int post, float porder, T* out_norm) {
typedef cub::BlockReduce<T, BlockDim> BlockReduce;
using MT = typename details::MPTypeTrait<T>::Type;
typedef cub::BlockReduce<MT, BlockDim> BlockReduce;
__shared__ typename BlockReduce::TempStorage temp_storage;
int num = pre * post;
auto porder_t = static_cast<T>(porder);
auto porder_inv = static_cast<T>(1.0 / porder);
auto porder_t = static_cast<MT>(porder);
auto porder_inv = static_cast<MT>(1.0 / porder);

for (int i = blockIdx.x; i < num; i += gridDim.x) {
int base = (i / post) * post * axis_n + (i % post);
T sum = 0.0;
MT sum = static_cast<MT>(0.0);
for (int j = threadIdx.x; j < axis_n; j += blockDim.x) {
const T x_ij = x[base + j * post];
const MT x_ij = static_cast<MT>(x[base + j * post]);
sum += inline_pow(inline_abs(x_ij), porder_t);
}
T reduce_result = BlockReduce(temp_storage).Sum(sum);
if (threadIdx.x == 0) out_norm[i] = inline_pow(reduce_result, porder_inv);
MT reduce_result = BlockReduce(temp_storage).Sum(sum);
if (threadIdx.x == 0)
out_norm[i] = static_cast<T>(inline_pow(reduce_result, porder_inv));
}
}

template <typename T, int BlockDim>
__global__ void ZeorNorm(const T* x, const int pre,
const int axis_n, // dim in axis
const int post, T* out_norm) {
typedef cub::BlockReduce<T, BlockDim> BlockReduce;
using MT = typename details::MPTypeTrait<T>::Type;
typedef cub::BlockReduce<MT, BlockDim> BlockReduce;
__shared__ typename BlockReduce::TempStorage temp_storage;
int num = pre * post;
for (int i = blockIdx.x; i < num; i += gridDim.x) {
int base = (i / post) * post * axis_n + (i % post);
T sum = 0.0;
MT sum = static_cast<MT>(0.0);
for (int j = threadIdx.x; j < axis_n; j += blockDim.x) {
const T x_ij = x[base + j * post];
sum += static_cast<T>(x_ij != 0);
const MT x_ij = static_cast<MT>(x[base + j * post]);
sum += static_cast<MT>(static_cast<double>(x_ij) != 0);
}
T reduce_result = BlockReduce(temp_storage).Sum(sum);
if (threadIdx.x == 0) out_norm[i] = reduce_result;
MT reduce_result = BlockReduce(temp_storage).Sum(sum);
if (threadIdx.x == 0) out_norm[i] = static_cast<T>(reduce_result);
}
}

Expand Down Expand Up @@ -172,27 +188,29 @@ __global__ void PnormGradient(const T* x, const T* x_norm, const T* y_grad,
const float porder, const int pre,
const int axis_n, const int post, const T eps,
T* x_grad) {
using MT = typename details::MPTypeTrait<T>::Type;
// dx = (x/pnorm_broadcast).pow(p-1) * norm_dy.broadcast * sign(x)
int num = pre * post;
auto porder_grad = static_cast<T>(porder - 1.0f);
auto porder_grad = static_cast<MT>(porder - 1.0f);
for (int i = blockIdx.x; i < num; i += gridDim.x) {
__shared__ T pnorm_i;
__shared__ T yout_i;
__shared__ MT pnorm_i;
__shared__ MT yout_i;

auto base = (i / post) * post * axis_n + (i % post);

if (threadIdx.x == 0) {
pnorm_i = x_norm[i];
yout_i = y_grad[i];
pnorm_i = static_cast<MT>(x_norm[i]);
yout_i = static_cast<MT>(y_grad[i]);
}
__syncthreads();

for (int j = threadIdx.x; j < axis_n; j += blockDim.x) {
int index = base + j * post;
const T x_ij = inline_abs(x[index]);
x_grad[index] = inline_pow(x_ij, porder_grad) /
(inline_pow(pnorm_i, porder_grad) + eps) * yout_i *
inline_sign(x[index]);
const MT x_ij = static_cast<MT>(inline_abs(x[index]));
x_grad[index] = static_cast<T>(
inline_pow(x_ij, porder_grad) /
(inline_pow(pnorm_i, porder_grad) + static_cast<MT>(eps)) * yout_i *
static_cast<MT>(inline_sign(x[index])));
}
}
}
Expand All @@ -216,7 +234,7 @@ __global__ void InfNormGradient(const T* x, const T* x_norm, const T* y_grad,
int index = base + j * post;
const T x_ij = inline_abs(x[index]);
if (x_ij == pnorm_i) {
x_grad[index] = inline_sign(x[index]) * yout_i;
x_grad[index] = static_cast<T>(inline_sign(x[index])) * yout_i;
} else {
x_grad[index] = static_cast<T>(0);
}
Expand Down Expand Up @@ -278,7 +296,11 @@ class PnormGradCUDAKernel : public framework::OpKernel<T> {
namespace ops = paddle::operators;
using CUDA = paddle::platform::CUDADeviceContext;

REGISTER_OP_CUDA_KERNEL(p_norm, ops::PnormCUDAKernel<CUDA, float>,
REGISTER_OP_CUDA_KERNEL(p_norm,
ops::PnormCUDAKernel<CUDA, paddle::platform::float16>,
ops::PnormCUDAKernel<CUDA, float>,
ops::PnormCUDAKernel<CUDA, double>);
REGISTER_OP_CUDA_KERNEL(p_norm_grad, ops::PnormGradCUDAKernel<CUDA, float>,
ops::PnormGradCUDAKernel<CUDA, double>);
REGISTER_OP_CUDA_KERNEL(
p_norm_grad, ops::PnormGradCUDAKernel<CUDA, paddle::platform::float16>,
ops::PnormGradCUDAKernel<CUDA, float>,
ops::PnormGradCUDAKernel<CUDA, double>);
3 changes: 2 additions & 1 deletion python/paddle/nn/functional/norm.py
Original file line number Diff line number Diff line change
Expand Up @@ -86,7 +86,8 @@ def normalize(x, p=2, axis=1, epsilon=1e-12, name=None):

check_type(p, 'p', (float, int), 'normalize')
check_type(axis, 'axis', (int), 'normalize')
check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'normalize')
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
'normalize')
if len(x.shape) == 1 and axis != 0 and axis != -1:
raise ValueError(
"Axis must be 0 or -1 when x is a 1-D tensor, but received axis = {}".
Expand Down