-
Notifications
You must be signed in to change notification settings - Fork 5.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Added fp32 / bf16 forward and backward elementwise_div_mkldnn operator #36158
Merged
jczaja
merged 10 commits into
PaddlePaddle:develop
from
piotrekobi:piotrekobi_elementwise_div_mkldnn
Oct 27, 2021
Merged
Changes from all commits
Commits
Show all changes
10 commits
Select commit
Hold shift + click to select a range
e529ee0
Add WIP version of elementwise_div_mkldnn without working dy grad
piotrekobi cbc7647
Add dy gradient calculation implementation, disable broadcast tests
piotrekobi 2211611
Readd removed tests from static_mode_white_list
piotrekobi 330b369
Add bfloat16 gradient tests, remove int8 and uint8 support
piotrekobi 190a0b9
- Change the way dy grad is calculated to improve performance
piotrekobi 22fc17b
Change copyright year
piotrekobi dd1c0ab
Refactor as suggested
piotrekobi a910f52
Attempt to bypass CI Approval
piotrekobi c05284c
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
piotrekobi bf6d2cd
Fix formatting issue
piotrekobi File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
147 changes: 147 additions & 0 deletions
147
paddle/fluid/operators/elementwise/mkldnn/elementwise_div_mkldnn_op.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,147 @@ | ||
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/fluid/operators/elementwise/mkldnn/elementwise_mkldnn_op.h" | ||
|
||
namespace paddle { | ||
namespace framework { | ||
class ExecutionContext; | ||
} // namespace framework | ||
namespace platform { | ||
class CPUDeviceContext; | ||
struct CPUPlace; | ||
} // namespace platform | ||
} // namespace paddle | ||
|
||
namespace paddle { | ||
namespace operators { | ||
template <typename T> | ||
class EltwiseDivMKLDNNGradKernel : public ElemwiseGradKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
ElemwiseGradKernel<T>::Compute(ctx); | ||
|
||
auto& dev_ctx = | ||
ctx.template device_context<platform::MKLDNNDeviceContext>(); | ||
const auto& mkldnn_engine = dev_ctx.GetEngine(); | ||
|
||
auto* y = ctx.Input<framework::Tensor>("Y"); | ||
auto* out = ctx.Input<framework::Tensor>("Out"); | ||
auto* dout = ctx.Input<framework::Tensor>(framework::GradVarName("Out")); | ||
auto* dx = ctx.Output<framework::Tensor>(framework::GradVarName("X")); | ||
auto* dy = ctx.Output<framework::Tensor>(framework::GradVarName("Y")); | ||
int axis = ctx.Attr<int>("axis"); | ||
|
||
auto& astream = platform::MKLDNNDeviceContext::tls().get_stream(); | ||
|
||
if (dx) { | ||
// dx = dout / y | ||
|
||
platform::BinaryMKLDNNHandler<T> handler( | ||
dnnl::algorithm::binary_div, axis, mkldnn_engine, ctx.GetPlace(), | ||
dout, y, dx, 1.0f, 1.0f, 1.0f); | ||
|
||
const auto src_dout_memory = handler.AcquireSrcMemory(dout); | ||
const auto src_y_memory = handler.AcquireSecondSrcMemory(y); | ||
const auto dst_dx_memory = handler.AcquireDstMemory(dx); | ||
|
||
const auto binary_prim = handler.AcquireForwardPrimitive(); | ||
|
||
const std::unordered_map<int, dnnl::memory> args = { | ||
{DNNL_ARG_SRC_0, *src_dout_memory}, | ||
{DNNL_ARG_SRC_1, *src_y_memory}, | ||
{DNNL_ARG_DST, *dst_dx_memory}}; | ||
|
||
binary_prim->execute(astream, args); | ||
astream.wait(); | ||
|
||
dx->set_layout(framework::DataLayout::kMKLDNN); | ||
dx->set_format(platform::GetMKLDNNFormat(*dst_dx_memory)); | ||
} | ||
|
||
if (dy) { | ||
// dy = -dout * out / y | ||
|
||
platform::BinaryMKLDNNHandler<T> y_handler( | ||
dnnl::algorithm::binary_div, axis, mkldnn_engine, ctx.GetPlace(), y, | ||
y, nullptr, 1.0f, 1.0f, 1.0f); | ||
|
||
const auto y_memory = y_handler.AcquireSrcMemory(y); | ||
|
||
dnnl::post_ops po; | ||
po.append_binary(dnnl::algorithm::binary_div, y_memory->get_desc()); | ||
|
||
platform::BinaryMKLDNNHandler<T> handler( | ||
dnnl::algorithm::binary_mul, axis, mkldnn_engine, ctx.GetPlace(), | ||
dout, out, nullptr, -1.0f, 1.0f, 1.0f, po); | ||
|
||
const auto src_dout_memory = handler.AcquireSrcMemory(dout); | ||
const auto src_out_memory = handler.AcquireSecondSrcMemory(out); | ||
|
||
// If broadcasting is in use then let's write to temporary | ||
// buffer allocated by oneDNN | ||
const auto dst_dy_memory = (dout->dims() == dy->dims()) | ||
? handler.AcquireDstMemory(dy) | ||
: handler.AcquireDstMemory(); | ||
|
||
const auto binary_prim = handler.AcquireForwardPrimitive(); | ||
|
||
const std::unordered_map<int, dnnl::memory> args = { | ||
{DNNL_ARG_SRC_0, *src_dout_memory}, | ||
{DNNL_ARG_SRC_1, *src_out_memory}, | ||
{DNNL_ARG_DST, *dst_dy_memory}, | ||
{DNNL_ARG_ATTR_MULTIPLE_POST_OP(0) | DNNL_ARG_SRC_1, *y_memory}}; | ||
|
||
binary_prim->execute(astream, args); | ||
astream.wait(); | ||
|
||
dy->set_layout(framework::DataLayout::kMKLDNN); | ||
|
||
// Reduction is needed for broadcasting scenario | ||
if (dout->dims() != dy->dims()) { | ||
platform::ReductionMKLDNNHandler<T> handler_sum( | ||
dnnl::algorithm::reduction_sum, 0.0f, 0.0f, mkldnn_engine, | ||
ctx.GetPlace(), dout, dy, CalculateBroadcastedDims(dout, dy)); | ||
auto dy_memory_p = handler_sum.AcquireDstMemory(dy); | ||
auto reduction_p = handler_sum.AcquireForwardPrimitive(); | ||
|
||
// As source we use mem object with results from binary operation | ||
reduction_p->execute(astream, {{DNNL_ARG_SRC, *dst_dy_memory}, | ||
{DNNL_ARG_DST, *dy_memory_p}}); | ||
astream.wait(); | ||
dy->set_format( | ||
platform::GetMKLDNNFormat(dy_memory_p->get_desc().reshape( | ||
framework::vectorize<int64_t>(dy->dims())))); | ||
|
||
} else { | ||
dy->set_format(platform::GetMKLDNNFormat(*dst_dy_memory)); | ||
} | ||
} | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
|
||
// TODO(piotrekobi) add int8, uint8 support | ||
REGISTER_OP_KERNEL(elementwise_div, MKLDNN, paddle::platform::CPUPlace, | ||
ops::EltwiseMKLDNNKernel<float, dnnl::algorithm::binary_div>, | ||
ops::EltwiseMKLDNNKernel<paddle::platform::bfloat16, | ||
dnnl::algorithm::binary_div>) | ||
|
||
REGISTER_OP_KERNEL(elementwise_div_grad, MKLDNN, paddle::platform::CPUPlace, | ||
ops::EltwiseDivMKLDNNGradKernel<paddle::platform::bfloat16>, | ||
ops::EltwiseDivMKLDNNGradKernel<float>) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
179 changes: 179 additions & 0 deletions
179
python/paddle/fluid/tests/unittests/mkldnn/test_elementwise_div_mkldnn_op.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,179 @@ | ||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from __future__ import print_function | ||
import unittest | ||
import numpy as np | ||
from paddle import enable_static | ||
from paddle.fluid.tests.unittests.op_test import OpTest, OpTestTool, convert_float_to_uint16 | ||
from paddle.fluid.framework import _current_expected_place | ||
import paddle.fluid.core as core | ||
|
||
|
||
@OpTestTool.skip_if(not (isinstance(_current_expected_place(), core.CPUPlace)), | ||
"GPU is not supported") | ||
class TestMKLDNNElementwiseDivOp(OpTest): | ||
def setUp(self): | ||
self.op_type = "elementwise_div" | ||
self.init_dtype() | ||
self.init_input_output() | ||
self.init_kernel_type() | ||
self.init_axis() | ||
self.inputs = { | ||
'X': OpTest.np_dtype_to_fluid_dtype(self.x), | ||
'Y': OpTest.np_dtype_to_fluid_dtype(self.y) | ||
} | ||
self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn} | ||
self.outputs = {'Out': self.out} | ||
|
||
def init_input_output(self): | ||
self.x = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype) | ||
self.y = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype) | ||
self.out = np.divide(self.x, self.y) | ||
|
||
def test_check_grad_normal(self): | ||
self.check_grad(['X', 'Y'], 'Out', None, 0.005, False, 0.02) | ||
|
||
def test_check_grad_ignore_x(self): | ||
self.check_grad(['Y'], 'Out', set("X"), 0.005, False, 0.02) | ||
|
||
def test_check_grad_ignore_y(self): | ||
self.check_grad(['X'], 'Out', set('Y'), 0.005, False, 0.02) | ||
|
||
def init_axis(self): | ||
self.axis = -1 | ||
|
||
def init_kernel_type(self): | ||
self.use_mkldnn = True | ||
|
||
def init_dtype(self): | ||
self.dtype = np.float32 | ||
|
||
def test_check_output(self): | ||
self.check_output() | ||
|
||
|
||
class TestMKLDNNElementwiseDivOp2(TestMKLDNNElementwiseDivOp): | ||
def init_input_output(self): | ||
self.x = np.random.uniform(0.1, 1, [100]).astype(self.dtype) | ||
self.y = np.random.uniform(0.1, 1, [100]).astype(self.dtype) | ||
self.out = np.divide(self.x, self.y) | ||
|
||
|
||
class TestMKLDNNElementwiseDivOp3(TestMKLDNNElementwiseDivOp): | ||
def init_input_output(self): | ||
self.x = np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype(self.dtype) | ||
self.y = np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype(self.dtype) | ||
self.out = np.divide(self.x, self.y) | ||
|
||
|
||
class TestMKLDNNElementwiseDivOp4(TestMKLDNNElementwiseDivOp): | ||
def init_input_output(self): | ||
self.x = np.random.uniform(1, 2, [2, 3, 4, 32]).astype(self.dtype) | ||
self.y = np.random.uniform(1, 2, [4, 32]).astype(self.dtype) | ||
self.out = np.divide(self.x, self.y) | ||
|
||
# TODO(piotrekobiIntel): Enable when grad is ready | ||
def test_check_grad_normal(self): | ||
pass | ||
|
||
def test_check_grad_ignore_x(self): | ||
pass | ||
|
||
|
||
class TestMKLDNNElementwiseDivOp5(TestMKLDNNElementwiseDivOp): | ||
def init_input_output(self): | ||
self.x = np.random.uniform(1, 2, [2, 3, 4, 100]).astype(self.dtype) | ||
self.y = np.random.uniform(1, 2, [100]).astype(self.dtype) | ||
self.out = np.divide(self.x, self.y) | ||
|
||
# TODO(piotrekobiIntel): Enable when grad is ready | ||
def test_check_grad_normal(self): | ||
pass | ||
|
||
def test_check_grad_ignore_x(self): | ||
pass | ||
|
||
|
||
@OpTestTool.skip_if_not_cpu_bf16() | ||
class TestBf16(TestMKLDNNElementwiseDivOp): | ||
def setUp(self): | ||
self.op_type = "elementwise_div" | ||
self.init_dtype() | ||
self.init_input_output() | ||
self.init_kernel_type() | ||
self.init_axis() | ||
|
||
self.x_bf16 = convert_float_to_uint16(self.x) | ||
self.y_bf16 = convert_float_to_uint16(self.y) | ||
self.inputs = {'X': self.x_bf16, 'Y': self.y_bf16} | ||
self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn} | ||
self.outputs = {'Out': convert_float_to_uint16(self.out)} | ||
|
||
def init_dtype(self): | ||
self.dtype = np.float32 | ||
self.mkldnn_data_type = "bfloat16" | ||
|
||
def init_input_output(self): | ||
self.x = np.random.uniform(0.1, 1, [100]).astype(self.dtype) | ||
self.y = np.random.uniform(0.1, 1, [100]).astype(self.dtype) | ||
self.out = np.divide(self.x, self.y) | ||
|
||
def test_check_output(self): | ||
self.check_output_with_place(core.CPUPlace()) | ||
|
||
def test_check_grad_normal(self): | ||
self.check_grad_with_place( | ||
core.CPUPlace(), ["X", "Y"], | ||
"Out", | ||
user_defined_grads=[ | ||
np.divide(self.x, self.y), np.divide( | ||
(np.multiply(-self.x, self.x)), np.multiply(self.y, self.y)) | ||
], | ||
user_defined_grad_outputs=[self.x_bf16]) | ||
|
||
def test_check_grad_ignore_x(self): | ||
self.check_grad_with_place( | ||
core.CPUPlace(), ["Y"], | ||
"Out", | ||
user_defined_grads=[ | ||
np.divide((np.multiply(-self.x, self.y)), | ||
np.multiply(self.y, self.y)) | ||
], | ||
user_defined_grad_outputs=[self.y_bf16]) | ||
|
||
def test_check_grad_ignore_y(self): | ||
self.check_grad_with_place( | ||
core.CPUPlace(), ["X"], | ||
"Out", | ||
user_defined_grads=[np.divide(self.x, self.y)], | ||
user_defined_grad_outputs=[self.x_bf16]) | ||
|
||
|
||
class TestBf16Broadcasting(TestBf16): | ||
def init_input_output(self): | ||
self.x = np.random.uniform(1, 2, [2, 3, 4, 100]).astype(self.dtype) | ||
self.y = np.random.uniform(1, 2, [100]).astype(self.dtype) | ||
self.out = np.subtract(self.x, self.y) | ||
|
||
def test_check_grad_normal(self): | ||
pass | ||
|
||
def test_check_grad_ignore_x(self): | ||
pass | ||
|
||
|
||
if __name__ == '__main__': | ||
enable_static() | ||
unittest.main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Why backward pass is not checked in this scenario?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Backward pass doesn't work correctly with broadcast for the elementwise_mkldnn mul and div operators. I've consulted this with @jczaja and he said that these tests can be disabled for now. I've added a comment to notify the fact that this should be looked into.