-
Notifications
You must be signed in to change notification settings - Fork 5.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add bincount op #36317
Add bincount op #36317
Changes from all commits
c042720
421c118
d26d729
78ac5e0
2b518ed
b4347e2
4feec4f
994829c
0b9ecb4
b75b67d
4cdc2e8
aa83dd0
74b18ea
401062e
647aa0d
9f4590d
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/fluid/operators/bincount_op.h" | ||
|
||
#include <string> | ||
#include <unordered_map> | ||
#include <vector> | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
using framework::OpKernelType; | ||
using framework::Tensor; | ||
|
||
class BincountOp : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
||
void InferShape(framework::InferShapeContext *ctx) const override { | ||
PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true, | ||
platform::errors::InvalidArgument( | ||
"Input(X) of BincountOp should not be null.")); | ||
PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true, | ||
platform::errors::InvalidArgument( | ||
"Output(Out) of BincountOp should not be null.")); | ||
|
||
auto input_dim = ctx->GetInputDim("X"); | ||
auto minlength = ctx->Attrs().Get<int>("minlength"); | ||
|
||
PADDLE_ENFORCE_GE(minlength, 0, | ||
platform::errors::InvalidArgument( | ||
"The minlength should be greater than or equal to 0." | ||
"But received minlength is %d", | ||
minlength)); | ||
|
||
PADDLE_ENFORCE_EQ(input_dim.size(), 1, | ||
platform::errors::InvalidArgument( | ||
"The 'shape' of Input(X) must be 1-D tensor." | ||
"But the dimension of Input(X) is [%d]", | ||
input_dim.size())); | ||
|
||
if (ctx->HasInput("Weights")) { | ||
auto weights_dim = ctx->GetInputDim("Weights"); | ||
PADDLE_ENFORCE_EQ(weights_dim.size(), 1, | ||
platform::errors::InvalidArgument( | ||
"The 'shape' of Input(Weights) must be 1-D tensor." | ||
"But the dimension of Input(Weights) is [%d]", | ||
weights_dim.size())); | ||
|
||
PADDLE_ENFORCE_EQ( | ||
weights_dim[0], input_dim[0], | ||
platform::errors::InvalidArgument( | ||
"The 'shape' of Input(Weights) must be equal to the 'shape' of " | ||
"Input(X)." | ||
"But received: the 'shape' of Input(Weights) is [%s]," | ||
"the 'shape' of Input(X) is [%s]", | ||
weights_dim, input_dim)); | ||
} | ||
|
||
ctx->SetOutputDim("Out", framework::make_ddim({-1})); | ||
ctx->ShareLoD("X", /*->*/ "Out"); | ||
} | ||
|
||
framework::OpKernelType GetExpectedKernelType( | ||
const framework::ExecutionContext &ctx) const { | ||
auto data_type = | ||
ctx.HasInput("Weights") | ||
? OperatorWithKernel::IndicateVarDataType(ctx, "Weights") | ||
: OperatorWithKernel::IndicateVarDataType(ctx, "X"); | ||
return framework::OpKernelType(data_type, ctx.device_context()); | ||
} | ||
}; | ||
|
||
class BincountOpMaker : public framework::OpProtoAndCheckerMaker { | ||
public: | ||
void Make() override { | ||
AddInput("X", "(Tensor) The input tensor of Bincount op,"); | ||
AddInput("Weights", "(Tensor) The weights tensor of Bincount op,") | ||
.AsDispensable(); | ||
AddOutput("Out", "(Tensor) The output tensor of Bincount op,"); | ||
AddAttr<int>("minlength", "(int) The minimal numbers of bins") | ||
.SetDefault(0) | ||
.EqualGreaterThan(0); | ||
AddComment(R"DOC( | ||
Bincount Operator. | ||
Computes frequency of each value in the input tensor. | ||
Elements of input tensor should be non-negative ints. | ||
)DOC"); | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
REGISTER_OPERATOR( | ||
bincount, ops::BincountOp, ops::BincountOpMaker, | ||
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>, | ||
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>); | ||
REGISTER_OP_CPU_KERNEL( | ||
bincount, ops::BincountKernel<paddle::platform::CPUDeviceContext, float>, | ||
ops::BincountKernel<paddle::platform::CPUDeviceContext, double>, | ||
ops::BincountKernel<paddle::platform::CPUDeviceContext, int>, | ||
ops::BincountKernel<paddle::platform::CPUDeviceContext, int64_t>); |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,160 @@ | ||
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/fluid/framework/eigen.h" | ||
#include "paddle/fluid/operators/bincount_op.h" | ||
#include "paddle/fluid/platform/cuda_primitives.h" | ||
#include "paddle/fluid/platform/gpu_launch_config.h" | ||
#include "paddle/fluid/platform/hostdevice.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
using Tensor = framework::Tensor; | ||
using platform::PADDLE_CUDA_NUM_THREADS; | ||
|
||
inline int GET_BLOCKS(const int N) { | ||
return (N + PADDLE_CUDA_NUM_THREADS - 1) / PADDLE_CUDA_NUM_THREADS; | ||
} | ||
|
||
template <typename T, typename InputT, typename OutT> | ||
__global__ void KernelBincount(const InputT* input, const int total_elements, | ||
const bool has_weights, const T* weights, | ||
OutT* output) { | ||
if (!has_weights) { | ||
for (int i = threadIdx.x; i < total_elements; i += blockDim.x) { | ||
paddle::platform::CudaAtomicAdd(&output[input[i]], 1L); | ||
} | ||
} else { | ||
for (int i = threadIdx.x; i < total_elements; i += blockDim.x) { | ||
paddle::platform::CudaAtomicAdd(&output[input[i]], | ||
static_cast<OutT>(weights[i])); | ||
} | ||
} | ||
} | ||
|
||
template <typename DeviceContext, typename T, typename InputT> | ||
void BincountCUDAInner(const framework::ExecutionContext& context) { | ||
const Tensor* input = context.Input<framework::Tensor>("X"); | ||
const Tensor* weights = context.Input<framework::Tensor>("Weights"); | ||
Tensor* output = context.Output<framework::Tensor>("Out"); | ||
auto& minlength = context.Attr<int>("minlength"); | ||
|
||
const InputT* input_data = input->data<InputT>(); | ||
|
||
const int input_numel = input->numel(); | ||
|
||
if (input_data == nullptr) { | ||
framework::DDim out_dim{0}; | ||
output->Resize(out_dim); | ||
output->mutable_data<T>(context.GetPlace()); | ||
return; | ||
} | ||
auto input_x = framework::EigenVector<InputT>::Flatten(*input); | ||
|
||
framework::Tensor input_min_t, input_max_t; | ||
auto* input_max_data = | ||
input_max_t.mutable_data<InputT>({1}, context.GetPlace()); | ||
auto* input_min_data = | ||
input_min_t.mutable_data<InputT>({1}, context.GetPlace()); | ||
|
||
auto input_max_scala = framework::EigenScalar<InputT>::From(input_max_t); | ||
auto input_min_scala = framework::EigenScalar<InputT>::From(input_min_t); | ||
|
||
auto* place = context.template device_context<DeviceContext>().eigen_device(); | ||
input_max_scala.device(*place) = input_x.maximum(); | ||
input_min_scala.device(*place) = input_x.minimum(); | ||
|
||
Tensor input_min_cpu, input_max_cpu; | ||
TensorCopySync(input_max_t, platform::CPUPlace(), &input_max_cpu); | ||
TensorCopySync(input_min_t, platform::CPUPlace(), &input_min_cpu); | ||
|
||
InputT input_min = input_min_cpu.data<InputT>()[0]; | ||
|
||
PADDLE_ENFORCE_GE( | ||
input_min, static_cast<InputT>(0), | ||
platform::errors::InvalidArgument( | ||
"The elements in input tensor must be non-negative ints")); | ||
|
||
int64_t output_size = | ||
static_cast<int64_t>(input_max_cpu.data<InputT>()[0]) + 1L; | ||
|
||
output_size = std::max(output_size, static_cast<int64_t>(minlength)); | ||
framework::DDim out_dim{output_size}; | ||
output->Resize(out_dim); | ||
|
||
bool has_weights = (weights != nullptr); | ||
|
||
const T* weights_data = has_weights ? weights->data<T>() : nullptr; | ||
|
||
auto stream = | ||
context.template device_context<platform::CUDADeviceContext>().stream(); | ||
|
||
if (!has_weights) { | ||
int64_t* output_data = output->mutable_data<int64_t>(context.GetPlace()); | ||
math::SetConstant<DeviceContext, int64_t>()( | ||
context.template device_context<DeviceContext>(), output, 0L); | ||
|
||
KernelBincount<T, InputT, int64_t><<<GET_BLOCKS(input_numel), | ||
PADDLE_CUDA_NUM_THREADS, 0, stream>>>( | ||
input_data, input_numel, has_weights, weights_data, output_data); | ||
} else { | ||
const auto& weights_type = weights->type(); | ||
|
||
if (weights_type == framework::proto::VarType::FP32) { | ||
float* output_data = output->mutable_data<float>(context.GetPlace()); | ||
math::SetConstant<DeviceContext, float>()( | ||
context.template device_context<DeviceContext>(), output, | ||
static_cast<float>(0)); | ||
|
||
KernelBincount<T, InputT, float><<<GET_BLOCKS(input_numel), | ||
PADDLE_CUDA_NUM_THREADS, 0, stream>>>( | ||
input_data, input_numel, has_weights, weights_data, output_data); | ||
} else { | ||
double* output_data = output->mutable_data<double>(context.GetPlace()); | ||
math::SetConstant<DeviceContext, double>()( | ||
context.template device_context<DeviceContext>(), output, | ||
static_cast<double>(0)); | ||
|
||
KernelBincount<T, InputT, double><<<GET_BLOCKS(input_numel), | ||
PADDLE_CUDA_NUM_THREADS, 0, stream>>>( | ||
input_data, input_numel, has_weights, weights_data, output_data); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 同CPU,float和double的分支代码是否可以使用T合并 There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 同上 |
||
} | ||
} | ||
} | ||
|
||
template <typename DeviceContext, typename T> | ||
class BincountCUDAKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& context) const override { | ||
const Tensor* input = context.Input<framework::Tensor>("X"); | ||
const auto& input_type = input->type(); | ||
|
||
if (input_type == framework::proto::VarType::INT32) { | ||
BincountCUDAInner<DeviceContext, T, int>(context); | ||
} else if (input_type == framework::proto::VarType::INT64) { | ||
BincountCUDAInner<DeviceContext, T, int64_t>(context); | ||
} | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
REGISTER_OP_CUDA_KERNEL( | ||
bincount, ops::BincountCUDAKernel<paddle::platform::CUDADeviceContext, int>, | ||
ops::BincountCUDAKernel<paddle::platform::CUDADeviceContext, int64_t>, | ||
ops::BincountCUDAKernel<paddle::platform::CUDADeviceContext, float>, | ||
ops::BincountCUDAKernel<paddle::platform::CUDADeviceContext, double>); |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#pragma once | ||
|
||
#include <algorithm> | ||
|
||
#include "paddle/fluid/framework/op_registry.h" | ||
#include "paddle/fluid/framework/operator.h" | ||
#include "paddle/fluid/operators/math/math_function.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
using Tensor = framework::Tensor; | ||
|
||
template <typename DeviceContext, typename T, typename InputT> | ||
void BincountInner(const framework::ExecutionContext& context) { | ||
const Tensor* input = context.Input<framework::Tensor>("X"); | ||
const Tensor* weights = context.Input<framework::Tensor>("Weights"); | ||
Tensor* output = context.Output<framework::Tensor>("Out"); | ||
auto& minlength = context.Attr<int>("minlength"); | ||
|
||
const InputT* input_data = input->data<InputT>(); | ||
|
||
auto input_numel = input->numel(); | ||
|
||
if (input_data == nullptr) { | ||
framework::DDim out_dim{0}; | ||
output->Resize(out_dim); | ||
output->mutable_data<InputT>(context.GetPlace()); | ||
return; | ||
} | ||
|
||
PADDLE_ENFORCE_GE( | ||
*std::min_element(input_data, input_data + input_numel), | ||
static_cast<InputT>(0), | ||
platform::errors::InvalidArgument( | ||
"The elements in input tensor must be non-negative ints")); | ||
Comment on lines
+46
to
+50
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. the check of PADDLE_ENFORCE* should in InferShape rather than in Compute, so we can detect illegal input earlier There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Done, thanks! |
||
|
||
int64_t output_size = static_cast<int64_t>(*std::max_element( | ||
input_data, input_data + input_numel)) + | ||
1L; | ||
output_size = std::max(output_size, static_cast<int64_t>(minlength)); | ||
|
||
framework::DDim out_dim{output_size}; | ||
output->Resize(out_dim); | ||
|
||
bool has_weights = (weights != nullptr); | ||
|
||
if (has_weights) { | ||
const T* weights_data = weights->data<T>(); | ||
const auto& weights_type = weights->type(); | ||
if (weights_type == framework::proto::VarType::FP32) { | ||
float* output_data = output->mutable_data<float>(context.GetPlace()); | ||
math::SetConstant<DeviceContext, float>()( | ||
context.template device_context<DeviceContext>(), output, | ||
static_cast<float>(0)); | ||
for (int64_t i = 0; i < input_numel; i++) { | ||
output_data[input_data[i]] += static_cast<float>(weights_data[i]); | ||
} | ||
} else { | ||
double* output_data = output->mutable_data<double>(context.GetPlace()); | ||
math::SetConstant<DeviceContext, double>()( | ||
context.template device_context<DeviceContext>(), output, | ||
static_cast<double>(0)); | ||
for (int64_t i = 0; i < input_numel; i++) { | ||
output_data[input_data[i]] += static_cast<double>(weights_data[i]); | ||
} | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 这个float和double的分支代码是否可以使用T合并,也和int类型的Weights更适配 There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 这边是为了保证与竞品一致。weights可以是任意数据类型,只有当weights float32时,output的类型才是float32。其他三种情况下output都是float64。 |
||
} | ||
|
||
} else { | ||
int64_t* output_data = output->mutable_data<int64_t>(context.GetPlace()); | ||
math::SetConstant<DeviceContext, int64_t>()( | ||
context.template device_context<DeviceContext>(), output, 0L); | ||
for (int64_t i = 0; i < input_numel; i++) { | ||
output_data[input_data[i]] += 1L; | ||
} | ||
} | ||
} | ||
|
||
template <typename DeviceContext, typename T> | ||
class BincountKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& context) const override { | ||
const Tensor* input = context.Input<framework::Tensor>("X"); | ||
const auto& input_type = input->type(); | ||
|
||
if (input_type == framework::proto::VarType::INT32) { | ||
BincountInner<DeviceContext, T, int>(context); | ||
} else if (input_type == framework::proto::VarType::INT64) { | ||
BincountInner<DeviceContext, T, int64_t>(context); | ||
} | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
the check of PADDLE_ENFORCE* should in InferShape rather than in Compute, so we can detect illegal input earlier
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Done, thanks!