Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add dirichlet random sample op in cpu and gpu kernel #38244

Merged
merged 5 commits into from
Dec 30, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
125 changes: 125 additions & 0 deletions paddle/fluid/operators/dirichlet_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,125 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/dirichlet_op.h"

#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/reduce_ops/reduce_op.h"
#include "paddle/fluid/operators/reduce_ops/reduce_sum_op.h"

namespace paddle {
namespace operators {
template <typename T, typename UniformSamplerT, typename NormalSamplerT>
struct GammaCPUFunctor {
GammaCPUFunctor(const T* alpha, T* gamma,
BaseSampler<T, UniformSamplerT> uniform,
BaseSampler<T, NormalSamplerT> normal)
: alpha_(alpha), gamma_(gamma), uniform_(uniform), normal_(normal) {}

HOST void operator()(int64_t index) {
auto sample = sample_gamma<T, T, UniformSamplerT, NormalSamplerT>(
alpha_[index], uniform_, normal_);
gamma_[index] = std::max(std::numeric_limits<T>::min(), sample);
}

const T* alpha_;
T* gamma_;
BaseSampler<T, UniformSamplerT> uniform_;
BaseSampler<T, NormalSamplerT> normal_;
};

template <typename T>
struct DirichletSampler<platform::CPUDeviceContext, T> {
void operator()(const framework::ExecutionContext& ctx, const Tensor* alpha,
Tensor* out) {
auto& dev_ctx = ctx.device_context<platform::CPUDeviceContext>();

auto p_gen = framework::DefaultCPUGenerator();
auto generator = p_gen->GetCPUEngine();

auto uniform = [&generator]() -> T {
std::uniform_real_distribution<T> u(0.0, 1.0);
return u(*generator);
};
BaseSampler<T, decltype(uniform)> standard_uniform(uniform);

auto normal = [&generator]() {
std::normal_distribution<T> n(0.0, 1.0);
return n(*generator);
};
BaseSampler<T, decltype(normal)> standard_normal(normal);

// sample from K gamma distributions, where K=alpha.numel()
framework::Tensor gamma_samples;
gamma_samples.mutable_data<T>(alpha->dims(), dev_ctx.GetPlace());
GammaCPUFunctor<T, decltype(uniform), decltype(normal)> gamma_functor(
alpha->data<T>(), gamma_samples.data<T>(), standard_uniform,
standard_normal);
platform::ForRange<platform::CPUDeviceContext> for_range(dev_ctx,
alpha->numel());
for_range(gamma_functor);

// normalize them into a simplex, along the last axis
framework::Tensor gamma_sum;
auto new_shape = gamma_samples.dims();
new_shape[new_shape.size() - 1] = 1;
gamma_sum.mutable_data<T>(new_shape, dev_ctx.GetPlace());

ReduceKernelFunctor<platform::CPUDeviceContext, T, SumFunctor>(
&gamma_samples, &gamma_sum, {new_shape.size() - 1}, true, false, ctx)
.template apply<T>();
ElementwiseComputeEx<DivFunctor<T>, platform::CPUDeviceContext, T, T>(
ctx, &gamma_samples, &gamma_sum, -1, DivFunctor<T>(), out);
}
};

class DirichletOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("Alpha", "(Tensor), The dirichlet Alpha parameter");
AddOutput("Out", "(Tensor), The output tensor of sample");
AddComment(R"DOC(Sample random data from dirichlet distribution.)DOC");
}
};

class DirichletOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("Alpha"), "Input", "Alpha", "dirichlet");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "dirichlet");
const auto alpha_dim = ctx->GetInputDim("Alpha");
PADDLE_ENFORCE_GE(alpha_dim.size(), 1,
platform::errors::InvalidArgument(
"ShapeError: The number of dimensions of 'Alpha' "
"must be greater than or euqal to 1. "
"But received Alpha's dimensions = %d,",
alpha_dim.size()));
ctx->ShareDim("Alpha", /*->*/ "Out");
}
};

} // namespace operators
} // namespace paddle

REGISTER_OP_WITHOUT_GRADIENT(dirichlet, paddle::operators::DirichletOp,
paddle::operators::DirichletOpMaker);
REGISTER_OP_CPU_KERNEL(
dirichlet,
paddle::operators::DirichletKernel<paddle::platform::CPUDeviceContext,
float>,
paddle::operators::DirichletKernel<paddle::platform::CPUDeviceContext,
double>);
115 changes: 115 additions & 0 deletions paddle/fluid/operators/dirichlet_op.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,115 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/operators/dirichlet_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/reduce_ops/reduce_op.h"
#include "paddle/fluid/operators/reduce_ops/reduce_sum_op.h"
#include "paddle/fluid/platform/for_range.h"

#ifdef PADDLE_WITH_CUDA
#include <curand_kernel.h>
#endif
#ifdef PADDLE_WITH_HIP
#include <hiprand_kernel.h>
#endif

#if defined(PADDLE_WITH_CUDA)
using COMPAT_RANDSTATEPHILOX4_32_10_T = curandStatePhilox4_32_10_t;
#define COMPAT_RAND_INIT curand_init
#define COMPAT_RAND_UNIFORM curand_uniform
#define COMPAT_RAND_NORMAL curand_normal
#elif defined(PADDLE_WITH_HIP)
using COMPAT_RANDSTATEPHILOX4_32_10_T = hiprandStatePhilox4_32_10_t;
#define COMPAT_RAND_INIT hiprand_init
#define COMPAT_RAND_UNIFORM hiprand_uniform
#define COMPAT_RAND_NORMAL hiprand_normal
#endif

namespace paddle {
namespace operators {
template <typename T>
struct GammaCUDAFunctor {
GammaCUDAFunctor(const T* alpha, T* gamma, uint64_t seed, uint64_t offset)
: alpha_(alpha), gamma_(gamma), seed_(seed), offset_(offset) {}

DEVICE void operator()(int64_t index) {
// curand initialization
COMPAT_RANDSTATEPHILOX4_32_10_T state;
COMPAT_RAND_INIT(/*seed=*/seed_, /*subsequence=*/index, /*offset=*/offset_,
&state);

// sample
auto uniform_lambda = [&state]() { return COMPAT_RAND_UNIFORM(&state); };
BaseSampler<T, decltype(uniform_lambda)> standard_uniform(uniform_lambda);
auto normal_lambda = [&state]() { return COMPAT_RAND_NORMAL(&state); };
BaseSampler<T, decltype(normal_lambda)> standard_normal(normal_lambda);

auto sample =
sample_gamma<T, T, decltype(uniform_lambda), decltype(normal_lambda)>(
alpha_[index], standard_uniform, standard_normal);
gamma_[index] = std::max(std::numeric_limits<T>::min(), sample);
}

const T* alpha_;
T* gamma_;
const uint64_t seed_;
const uint64_t offset_;
};

template <typename T>
struct DirichletSampler<platform::CUDADeviceContext, T> {
void operator()(const framework::ExecutionContext& ctx,
const framework::Tensor* alpha, framework::Tensor* out) {
auto& dev_ctx = ctx.device_context<platform::CUDADeviceContext>();

// init state, seed & offset for all threads
int device_id =
BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace()).GetDeviceId();
auto p_gen = framework::GetDefaultCUDAGenerator(device_id);
auto seed_and_offset = p_gen->IncrementOffset(10); // hard-coded offset
auto seed = seed_and_offset.first;
auto offset = seed_and_offset.second;

// sample from K gamma distributions, where K=alpha.numel()
framework::Tensor gamma_samples;
gamma_samples.mutable_data<T>(alpha->dims(), dev_ctx.GetPlace());
GammaCUDAFunctor<T> gamma_functor(alpha->data<T>(), gamma_samples.data<T>(),
seed, offset);
platform::ForRange<platform::CUDADeviceContext> for_range(dev_ctx,
out->numel());
for_range(gamma_functor);

// normalize them into a simplex, along the last axis
framework::Tensor gamma_sum;
auto new_shape = gamma_samples.dims();
new_shape[new_shape.size() - 1] = 1;
gamma_sum.mutable_data<T>(new_shape, dev_ctx.GetPlace());

ReduceKernelFunctor<platform::CUDADeviceContext, T, SumFunctor>(
&gamma_samples, &gamma_sum, {new_shape.size() - 1}, true, false, ctx)
.template apply<T>();
ElementwiseComputeEx<DivFunctor<T>, platform::CUDADeviceContext, T, T>(
ctx, &gamma_samples, &gamma_sum, -1, DivFunctor<T>(), out);
}
};
} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_CUDA_KERNEL(
dirichlet, ops::DirichletKernel<paddle::platform::CUDADeviceContext, float>,
ops::DirichletKernel<paddle::platform::CUDADeviceContext, double>);
129 changes: 129 additions & 0 deletions paddle/fluid/operators/dirichlet_op.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,129 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <cmath>
#include <random>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/for_range.h"

// ROCM hcc doesn't work well with using std:: in kernel functions
#if defined(PADDLE_WITH_CUDA)
#define COMPAT_EXP exp
#define COMPAT_CEIL ceil
#define COMPAT_FLOOR floor
#define COMPAT_LOG log
#define COMPAT_POW pow
#define COMPAT_SQRT sqrt
#define COMPAT_TAN tan
#define COMPAT_ABS abs
#define COMPAT_LOG1P log1p
#else
#define COMPAT_EXP std::exp
#define COMPAT_CEIL std::ceil
#define COMPAT_FLOOR std::floor
#define COMPAT_LOG std::log
#define COMPAT_POW std::pow
#define COMPAT_SQRT std::sqrt
#define COMPAT_TAN std::tan
#define COMPAT_ABS std::abs
#define COMPAT_LOG1P std::log1p
#endif

namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
struct DirichletSampler;

template <typename ScalarT, typename SamplerT>
struct BaseSampler {
SamplerT sampler_;
HOSTDEVICE BaseSampler(const SamplerT& sampler) : sampler_(sampler) {}
HOSTDEVICE ScalarT sample() { return sampler_(); }
};

// `sample_gamma` is d from Numpy's distributions.c, and add support for
// paddle data type and code style.
// Source MIT licensed:
/* Copyright 2005 Robert Kern (robert.kern@gmail.com)
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/

template <typename ScalarT, typename AccscalarT, typename UniformSamplerT,
typename NormalSamplerT>
HOSTDEVICE ScalarT sample_gamma(
ScalarT alpha, BaseSampler<AccscalarT, UniformSamplerT> standard_uniform,
BaseSampler<AccscalarT, NormalSamplerT> standard_normal) {
AccscalarT scale = 1.0f;

// Boost alpha for higher acceptance probability.
if (alpha < 1.0f) {
if (alpha == 0.f) return 0.f;
scale *= COMPAT_POW(1 - standard_uniform.sample(), 1.0f / alpha);
alpha += 1.0f;
}

// This implements the acceptance-rejection method of Marsaglia and Tsang
// (2000)
// doi:10.1145/358407.358414
const AccscalarT d = alpha - 1.0f / 3.0f;
const AccscalarT c = 1.0f / COMPAT_SQRT(9.0f * d);
for (;;) {
AccscalarT x, y;
do {
x = standard_normal.sample();
y = 1.0f + c * x;
} while (y <= 0);
const AccscalarT v = y * y * y;
const AccscalarT u = 1 - standard_uniform.sample();
const AccscalarT xx = x * x;
if (u < 1.0f - 0.0331f * xx * xx)
return static_cast<ScalarT>(scale * d * v);
if (COMPAT_LOG(u) < 0.5f * xx + d * (1.0f - v + COMPAT_LOG(v)))
return static_cast<ScalarT>(scale * d * v);
}
}

template <typename DeviceContext, typename T>
class DirichletKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
const auto* alpha = ctx.Input<framework::Tensor>("Alpha");
auto* out = ctx.Output<framework::Tensor>("Out");
out->mutable_data<T>(ctx.GetPlace());

DirichletSampler<DeviceContext, T> sampler;
sampler(ctx, alpha, out);
}
};
} // namespace operators
} // namespace paddle
Loading