-
Notifications
You must be signed in to change notification settings - Fork 5.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Paddle-Inference] support preln-ernie: add preln_emb_eltwise_layernorm_op, preln_skip_layernorm_op #39570
Merged
Merged
[Paddle-Inference] support preln-ernie: add preln_emb_eltwise_layernorm_op, preln_skip_layernorm_op #39570
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
223 changes: 223 additions & 0 deletions
223
paddle/fluid/inference/tensorrt/convert/preln_emb_eltwise_layernorm.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,223 @@ | ||
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h" | ||
#include "paddle/fluid/inference/tensorrt/helper.h" | ||
|
||
namespace paddle { | ||
namespace framework { | ||
class Scope; | ||
namespace proto { | ||
class OpDesc; | ||
} // namespace proto | ||
} // namespace framework | ||
} // namespace paddle | ||
|
||
namespace paddle { | ||
namespace inference { | ||
namespace tensorrt { | ||
|
||
class PrelnEmbEltwiseLayerNormOpConverter : public OpConverter { | ||
public: | ||
void operator()(const framework::proto::OpDesc& op, | ||
const framework::Scope& scope, bool test_mode) override { | ||
#if IS_TRT_VERSION_GE(7000) | ||
VLOG(4) << "convert fluid PrelnEmbEltwiseLayerNorm op to tensorrt layer"; | ||
|
||
if (!(engine_->use_oss() && engine_->with_interleaved())) { | ||
PADDLE_THROW(platform::errors::Fatal( | ||
"PrelnErnie: If you want to use oss, must be with interleaved")); | ||
} | ||
framework::OpDesc op_desc(op, nullptr); | ||
bool enable_int8 = op_desc.HasAttr("enable_int8"); | ||
if (!enable_int8) { | ||
PADDLE_THROW( | ||
platform::errors::Fatal("use with_interleaved must be int8.")); | ||
} | ||
auto word_id_name = op_desc.Input("WordId").front(); | ||
auto pos_id_name = op_desc.Input("PosId").front(); | ||
engine_->Set("ernie_pos_name", new std::string(pos_id_name)); | ||
|
||
auto sent_id_name = op_desc.Input("SentId").front(); | ||
auto word_emb_name = op_desc.Input("WordEmbedding").front(); | ||
auto pos_emb_name = op_desc.Input("PosEmbedding").front(); | ||
auto sent_emb_name = op_desc.Input("SentEmbedding").front(); | ||
|
||
std::vector<std::string> id_names; | ||
std::vector<std::string> emb_names; | ||
|
||
id_names = | ||
std::vector<std::string>{word_id_name, pos_id_name, sent_id_name}; | ||
emb_names = | ||
std::vector<std::string>{word_emb_name, pos_emb_name, sent_emb_name}; | ||
|
||
int input_num = id_names.size(); | ||
|
||
// Declare inputs | ||
std::vector<nvinfer1::ITensor*> input_ids; | ||
for (int i = 0; i < input_num; i++) { | ||
input_ids.push_back(engine_->GetITensor(id_names[i])); | ||
} | ||
|
||
// input_embs[0]: word_embedding | ||
// input_embs[1]: pos_embedding | ||
// input_embs[2]: sent_embedding | ||
std::vector<float*> input_embs; | ||
std::vector<int> emb_sizes; | ||
|
||
// get the presistable var's data | ||
auto get_persistable_data = [&](const std::string& var_name, | ||
framework::DDim* dims) -> float* { | ||
auto* temp_var = scope.FindVar(var_name); | ||
auto* temp_tensor = temp_var->GetMutable<framework::LoDTensor>(); | ||
(*dims) = temp_tensor->dims(); | ||
|
||
auto* temp_data = engine_->GetWeightCPUData(var_name, temp_tensor, false); | ||
return temp_data; | ||
}; | ||
|
||
for (int i = 0; i < input_num; i++) { | ||
framework::DDim emb_dims; | ||
float* emb_data = get_persistable_data(emb_names[i], &emb_dims); | ||
int64_t emb_size = framework::product(emb_dims); | ||
input_embs.push_back(emb_data); | ||
emb_sizes.push_back(emb_size); | ||
PADDLE_ENFORCE_EQ( | ||
emb_dims.size(), 2, | ||
platform::errors::InvalidArgument( | ||
"The fused PrelnEmbEltwiseLayerNorm's emb should be 2 dims.")); | ||
} | ||
|
||
framework::DDim bias_dims, scale_dims; | ||
|
||
auto* bias = | ||
get_persistable_data(op_desc.Input("Bias").front(), &bias_dims); | ||
auto* scale = | ||
get_persistable_data(op_desc.Input("Scale").front(), &scale_dims); | ||
int64_t bias_size = framework::product(bias_dims); | ||
int64_t scale_size = framework::product(scale_dims); | ||
int output_int8 = 1; | ||
|
||
PADDLE_ENFORCE_EQ( | ||
input_num, 3, | ||
platform::errors::InvalidArgument( | ||
"When using oss and var-len, embedding_eltwise_layernorm op" | ||
"should have 3 inputs only, but got %d.", | ||
input_num)); | ||
const std::vector<nvinfer1::PluginField> fields{ | ||
{"bert_embeddings_layernorm_beta", bias, | ||
nvinfer1::PluginFieldType::kFLOAT32, static_cast<int32_t>(bias_size)}, | ||
{"bert_embeddings_layernorm_gamma", scale, | ||
nvinfer1::PluginFieldType::kFLOAT32, static_cast<int32_t>(scale_size)}, | ||
{"bert_embeddings_word_embeddings", input_embs[0], | ||
nvinfer1::PluginFieldType::kFLOAT32, | ||
static_cast<int32_t>(emb_sizes[0])}, | ||
{"bert_embeddings_token_type_embeddings", input_embs[2], | ||
nvinfer1::PluginFieldType::kFLOAT32, | ||
static_cast<int32_t>(emb_sizes[2])}, | ||
{"bert_embeddings_position_embeddings", input_embs[1], | ||
nvinfer1::PluginFieldType::kFLOAT32, | ||
static_cast<int32_t>(emb_sizes[1])}, | ||
{"output_int8", &output_int8, nvinfer1::PluginFieldType::kINT32, 1}, | ||
}; | ||
|
||
nvinfer1::PluginFieldCollection* plugin_ptr = | ||
static_cast<nvinfer1::PluginFieldCollection*>( | ||
malloc(sizeof(*plugin_ptr) + | ||
fields.size() * sizeof(nvinfer1::PluginField))); | ||
plugin_ptr->nbFields = static_cast<int>(fields.size()); | ||
plugin_ptr->fields = fields.data(); | ||
|
||
std::vector<nvinfer1::ITensor*> plugin_inputs; | ||
plugin_inputs.emplace_back( | ||
engine_->GetITensor(word_id_name)); // word_embedding, | ||
// eval_placeholder_0 | ||
plugin_inputs.emplace_back( | ||
engine_->GetITensor(sent_id_name)); // sent_embedding, | ||
// eval_placeholder_1 | ||
plugin_inputs.emplace_back( | ||
engine_->GetITensor(pos_id_name)); // cu_seqlens, | ||
// eval_placeholder_2 | ||
auto max_seqlen_tensor = | ||
engine_->GetITensor(engine_->network()->getInput(3)->getName()); | ||
auto* shuffle_layer = | ||
TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *max_seqlen_tensor); | ||
nvinfer1::Dims shape_dim; | ||
shape_dim.nbDims = 1; | ||
shape_dim.d[0] = -1; | ||
shuffle_layer->setReshapeDimensions(shape_dim); | ||
shuffle_layer->setName( | ||
("PrelnEmbeltwise_Shuffle_reshape (Output: max_seqlen " + | ||
op_desc.Output("Out")[0] + ")") | ||
.c_str()); | ||
engine_->SetTensorDynamicRange(shuffle_layer->getOutput(0), 1.0f); | ||
plugin_inputs.emplace_back( | ||
shuffle_layer->getOutput(0)); // max_seqlen, eval_placeholder_3 | ||
|
||
auto creator = GetPluginRegistry()->getPluginCreator( | ||
"CustomEmbLayerNormPluginDynamic", "3"); | ||
|
||
auto plugin_obj = | ||
creator->createPlugin("CustomEmbLayerNormPluginDynamic", plugin_ptr); | ||
auto plugin_layer = engine_->network()->addPluginV2( | ||
plugin_inputs.data(), plugin_inputs.size(), *plugin_obj); | ||
plugin_layer->setName(("CustomPrelnEmbLayerNormPluginDynamic_V3(Output: " + | ||
op_desc.Output("Out")[0] + ")") | ||
.c_str()); | ||
free(plugin_ptr); | ||
float out_0_scale = | ||
BOOST_GET_CONST(float, op_desc.GetAttr("out_0_threshold")); | ||
float out_1_scale = | ||
BOOST_GET_CONST(float, op_desc.GetAttr("out_1_threshold")); | ||
engine_->SetTensorDynamicRange(plugin_layer->getOutput(0), out_0_scale); | ||
engine_->SetTensorDynamicRange(plugin_layer->getOutput(1), out_1_scale); | ||
|
||
auto* shuffler_embed_out0 = | ||
TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *(plugin_layer->getOutput(0))); | ||
nvinfer1::Permutation transpose_0{2, 1, 0, 3}; | ||
shuffler_embed_out0->setSecondTranspose(transpose_0); | ||
shuffler_embed_out0->getOutput(0)->setName( | ||
op_desc.Output("Out_0")[0].c_str()); | ||
engine_->SetITensor(op_desc.Output("Out_0")[0], | ||
shuffler_embed_out0->getOutput(0)); | ||
shuffler_embed_out0->setName( | ||
("shuffler_after_CustomPrelnEmbLayerNormPluginDynamic_V3(Output_0: " + | ||
op_desc.Output("Out_0")[0] + ")") | ||
.c_str()); | ||
|
||
auto* shuffler_embed_out1 = | ||
TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *(plugin_layer->getOutput(1))); | ||
nvinfer1::Permutation transpose_1{2, 1, 0, 3}; | ||
shuffler_embed_out1->setSecondTranspose(transpose_1); | ||
shuffler_embed_out1->getOutput(0)->setName( | ||
op_desc.Output("Out_1")[0].c_str()); | ||
|
||
engine_->SetITensor(op_desc.Output("Out_1")[0], | ||
shuffler_embed_out1->getOutput(0)); | ||
shuffler_embed_out1->setName( | ||
("shuffler_after_CustomPrelnEmbLayerNormPluginDynamic_V3(Output_1: " + | ||
op_desc.Output("Out_1")[0] + ")") | ||
.c_str()); | ||
|
||
#else | ||
PADDLE_THROW(platform::errors::Fatal( | ||
"PreInErnie want to use oss, must be with interleaved, " | ||
"your TRT version is no less than 7.0")); | ||
#endif | ||
} | ||
}; | ||
|
||
} // namespace tensorrt | ||
} // namespace inference | ||
} // namespace paddle | ||
|
||
REGISTER_TRT_OP_CONVERTER(fused_preln_embedding_eltwise_layernorm, | ||
PrelnEmbEltwiseLayerNormOpConverter); |
110 changes: 110 additions & 0 deletions
110
paddle/fluid/inference/tensorrt/convert/preln_skip_layernorm.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,110 @@ | ||
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h" | ||
|
||
namespace paddle { | ||
namespace inference { | ||
namespace tensorrt { | ||
|
||
class PrelnSkipLayerNormOpConverter : public OpConverter { | ||
public: | ||
void operator()(const framework::proto::OpDesc& op, | ||
const framework::Scope& scope, bool test_mode) override { | ||
#if IS_TRT_VERSION_GE(7000) | ||
VLOG(4) << "convert fused preln_skip_layernorm op to tensorrt layer"; | ||
if (!(engine_->use_oss() && engine_->with_interleaved())) { | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 同上 |
||
PADDLE_THROW(platform::errors::Fatal( | ||
"PrelnErnie: If you want to use oss, must be with interleaved")); | ||
} | ||
framework::OpDesc op_desc(op, nullptr); | ||
bool enable_int8 = op_desc.HasAttr("enable_int8"); | ||
if (!enable_int8) { | ||
PADDLE_THROW( | ||
platform::errors::Fatal("use with_interleaved must be int8.")); | ||
} | ||
// Declare inputs | ||
auto* input1 = engine_->GetITensor(op_desc.Input("X")[0]); | ||
auto* input2 = engine_->GetITensor(op_desc.Input("Y")[0]); | ||
std::vector<nvinfer1::ITensor*> inputs; | ||
inputs.push_back(input1); | ||
inputs.push_back(input2); | ||
|
||
auto get_persistable_data = [&](const std::string& arg_name, | ||
framework::DDim* dims) -> float* { | ||
std::string var_name = op_desc.Input(arg_name).front(); | ||
auto* temp_var = scope.FindVar(var_name); | ||
auto* temp_tensor = temp_var->GetMutable<framework::LoDTensor>(); | ||
(*dims) = temp_tensor->dims(); | ||
|
||
auto* temp_data = engine_->GetWeightCPUData(var_name, temp_tensor, false); | ||
return temp_data; | ||
}; | ||
|
||
framework::DDim bias_dims, scale_dims; | ||
auto* bias = get_persistable_data("Bias", &bias_dims); | ||
auto* scale = get_persistable_data("Scale", &scale_dims); | ||
int bias_size = framework::product(bias_dims); | ||
int scale_size = framework::product(scale_dims); | ||
|
||
nvinfer1::ILayer* layer = nullptr; | ||
|
||
VLOG(4) << "fused preln_skip_layernorm op: use_oss and with_interleaved"; | ||
|
||
auto creator = GetPluginRegistry()->getPluginCreator( | ||
"CustomSkipLayerNormPluginDynamic", "4"); | ||
PADDLE_ENFORCE_NE( | ||
creator, nullptr, | ||
platform::errors::InvalidArgument( | ||
"fail to get creator of CustomPrelnSkipLayerNormPluginDynamic")); | ||
const std::vector<nvinfer1::PluginField> fields{ | ||
{"beta", bias, nvinfer1::PluginFieldType::kFLOAT32, bias_size}, | ||
{ "gamma", | ||
scale, | ||
nvinfer1::PluginFieldType::kFLOAT32, | ||
scale_size }}; | ||
nvinfer1::PluginFieldCollection* pluginPtr = | ||
static_cast<nvinfer1::PluginFieldCollection*>( | ||
malloc(sizeof(*pluginPtr) + | ||
fields.size() * sizeof(nvinfer1::PluginField))); | ||
pluginPtr->nbFields = static_cast<int>(fields.size()); | ||
pluginPtr->fields = fields.data(); | ||
|
||
auto pluginObj = | ||
creator->createPlugin("CustomSkipLayerNormPluginDynamic", pluginPtr); | ||
auto plugin_layer = engine_->network()->addPluginV2( | ||
inputs.data(), inputs.size(), *pluginObj); | ||
|
||
PADDLE_ENFORCE_NE( | ||
plugin_layer, nullptr, | ||
platform::errors::InvalidArgument( | ||
"fail to add CustomPrelnSkipLayerNormPluginDynamic layer")); | ||
layer = plugin_layer; | ||
|
||
auto output_name = op_desc.Output("Out")[0]; | ||
RreplenishLayerAndOutput(layer, "preln_skip_layernorm", {output_name}, | ||
test_mode); | ||
#else | ||
PADDLE_THROW(platform::errors::Fatal( | ||
"PreInErnie want to use oss, must be with interleaved, " | ||
"your TRT version is no less than 7.0")); | ||
#endif | ||
} | ||
}; | ||
|
||
} // namespace tensorrt | ||
} // namespace inference | ||
} // namespace paddle | ||
|
||
REGISTER_TRT_OP_CONVERTER(preln_skip_layernorm, PrelnSkipLayerNormOpConverter); |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
能否把判断放到pass部分,这样即便跑不了trt plugin,也不会挂掉。