Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Paddle-Inference] support preln-ernie: add preln_emb_eltwise_layernorm_op, preln_skip_layernorm_op #39570

Merged
merged 2 commits into from
Feb 16, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions paddle/fluid/inference/api/analysis_predictor.cc
Original file line number Diff line number Diff line change
Expand Up @@ -1470,6 +1470,8 @@ USE_TRT_CONVERTER(conv3d_transpose);
USE_TRT_CONVERTER(mish);
USE_TRT_CONVERTER(deformable_conv);
USE_TRT_CONVERTER(pool3d)
USE_TRT_CONVERTER(fused_preln_embedding_eltwise_layernorm)
USE_TRT_CONVERTER(preln_skip_layernorm)
#endif

namespace paddle_infer {
Expand Down
2 changes: 2 additions & 0 deletions paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,8 @@ nv_library(tensorrt_converter
nearest_interp_v2_op.cc
pool3d_op.cc
deformable_conv_op.cc
preln_emb_eltwise_layernorm.cc
preln_skip_layernorm.cc
DEPS tensorrt_engine tensorrt_plugin operator scope framework_proto op_registry)

nv_test(test_op_converter SRCS test_op_converter.cc DEPS
Expand Down
223 changes: 223 additions & 0 deletions paddle/fluid/inference/tensorrt/convert/preln_emb_eltwise_layernorm.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,223 @@
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/helper.h"

namespace paddle {
namespace framework {
class Scope;
namespace proto {
class OpDesc;
} // namespace proto
} // namespace framework
} // namespace paddle

namespace paddle {
namespace inference {
namespace tensorrt {

class PrelnEmbEltwiseLayerNormOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope, bool test_mode) override {
#if IS_TRT_VERSION_GE(7000)
VLOG(4) << "convert fluid PrelnEmbEltwiseLayerNorm op to tensorrt layer";

if (!(engine_->use_oss() && engine_->with_interleaved())) {
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

能否把判断放到pass部分,这样即便跑不了trt plugin,也不会挂掉。

PADDLE_THROW(platform::errors::Fatal(
"PrelnErnie: If you want to use oss, must be with interleaved"));
}
framework::OpDesc op_desc(op, nullptr);
bool enable_int8 = op_desc.HasAttr("enable_int8");
if (!enable_int8) {
PADDLE_THROW(
platform::errors::Fatal("use with_interleaved must be int8."));
}
auto word_id_name = op_desc.Input("WordId").front();
auto pos_id_name = op_desc.Input("PosId").front();
engine_->Set("ernie_pos_name", new std::string(pos_id_name));

auto sent_id_name = op_desc.Input("SentId").front();
auto word_emb_name = op_desc.Input("WordEmbedding").front();
auto pos_emb_name = op_desc.Input("PosEmbedding").front();
auto sent_emb_name = op_desc.Input("SentEmbedding").front();

std::vector<std::string> id_names;
std::vector<std::string> emb_names;

id_names =
std::vector<std::string>{word_id_name, pos_id_name, sent_id_name};
emb_names =
std::vector<std::string>{word_emb_name, pos_emb_name, sent_emb_name};

int input_num = id_names.size();

// Declare inputs
std::vector<nvinfer1::ITensor*> input_ids;
for (int i = 0; i < input_num; i++) {
input_ids.push_back(engine_->GetITensor(id_names[i]));
}

// input_embs[0]: word_embedding
// input_embs[1]: pos_embedding
// input_embs[2]: sent_embedding
std::vector<float*> input_embs;
std::vector<int> emb_sizes;

// get the presistable var's data
auto get_persistable_data = [&](const std::string& var_name,
framework::DDim* dims) -> float* {
auto* temp_var = scope.FindVar(var_name);
auto* temp_tensor = temp_var->GetMutable<framework::LoDTensor>();
(*dims) = temp_tensor->dims();

auto* temp_data = engine_->GetWeightCPUData(var_name, temp_tensor, false);
return temp_data;
};

for (int i = 0; i < input_num; i++) {
framework::DDim emb_dims;
float* emb_data = get_persistable_data(emb_names[i], &emb_dims);
int64_t emb_size = framework::product(emb_dims);
input_embs.push_back(emb_data);
emb_sizes.push_back(emb_size);
PADDLE_ENFORCE_EQ(
emb_dims.size(), 2,
platform::errors::InvalidArgument(
"The fused PrelnEmbEltwiseLayerNorm's emb should be 2 dims."));
}

framework::DDim bias_dims, scale_dims;

auto* bias =
get_persistable_data(op_desc.Input("Bias").front(), &bias_dims);
auto* scale =
get_persistable_data(op_desc.Input("Scale").front(), &scale_dims);
int64_t bias_size = framework::product(bias_dims);
int64_t scale_size = framework::product(scale_dims);
int output_int8 = 1;

PADDLE_ENFORCE_EQ(
input_num, 3,
platform::errors::InvalidArgument(
"When using oss and var-len, embedding_eltwise_layernorm op"
"should have 3 inputs only, but got %d.",
input_num));
const std::vector<nvinfer1::PluginField> fields{
{"bert_embeddings_layernorm_beta", bias,
nvinfer1::PluginFieldType::kFLOAT32, static_cast<int32_t>(bias_size)},
{"bert_embeddings_layernorm_gamma", scale,
nvinfer1::PluginFieldType::kFLOAT32, static_cast<int32_t>(scale_size)},
{"bert_embeddings_word_embeddings", input_embs[0],
nvinfer1::PluginFieldType::kFLOAT32,
static_cast<int32_t>(emb_sizes[0])},
{"bert_embeddings_token_type_embeddings", input_embs[2],
nvinfer1::PluginFieldType::kFLOAT32,
static_cast<int32_t>(emb_sizes[2])},
{"bert_embeddings_position_embeddings", input_embs[1],
nvinfer1::PluginFieldType::kFLOAT32,
static_cast<int32_t>(emb_sizes[1])},
{"output_int8", &output_int8, nvinfer1::PluginFieldType::kINT32, 1},
};

nvinfer1::PluginFieldCollection* plugin_ptr =
static_cast<nvinfer1::PluginFieldCollection*>(
malloc(sizeof(*plugin_ptr) +
fields.size() * sizeof(nvinfer1::PluginField)));
plugin_ptr->nbFields = static_cast<int>(fields.size());
plugin_ptr->fields = fields.data();

std::vector<nvinfer1::ITensor*> plugin_inputs;
plugin_inputs.emplace_back(
engine_->GetITensor(word_id_name)); // word_embedding,
// eval_placeholder_0
plugin_inputs.emplace_back(
engine_->GetITensor(sent_id_name)); // sent_embedding,
// eval_placeholder_1
plugin_inputs.emplace_back(
engine_->GetITensor(pos_id_name)); // cu_seqlens,
// eval_placeholder_2
auto max_seqlen_tensor =
engine_->GetITensor(engine_->network()->getInput(3)->getName());
auto* shuffle_layer =
TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *max_seqlen_tensor);
nvinfer1::Dims shape_dim;
shape_dim.nbDims = 1;
shape_dim.d[0] = -1;
shuffle_layer->setReshapeDimensions(shape_dim);
shuffle_layer->setName(
("PrelnEmbeltwise_Shuffle_reshape (Output: max_seqlen " +
op_desc.Output("Out")[0] + ")")
.c_str());
engine_->SetTensorDynamicRange(shuffle_layer->getOutput(0), 1.0f);
plugin_inputs.emplace_back(
shuffle_layer->getOutput(0)); // max_seqlen, eval_placeholder_3

auto creator = GetPluginRegistry()->getPluginCreator(
"CustomEmbLayerNormPluginDynamic", "3");

auto plugin_obj =
creator->createPlugin("CustomEmbLayerNormPluginDynamic", plugin_ptr);
auto plugin_layer = engine_->network()->addPluginV2(
plugin_inputs.data(), plugin_inputs.size(), *plugin_obj);
plugin_layer->setName(("CustomPrelnEmbLayerNormPluginDynamic_V3(Output: " +
op_desc.Output("Out")[0] + ")")
.c_str());
free(plugin_ptr);
float out_0_scale =
BOOST_GET_CONST(float, op_desc.GetAttr("out_0_threshold"));
float out_1_scale =
BOOST_GET_CONST(float, op_desc.GetAttr("out_1_threshold"));
engine_->SetTensorDynamicRange(plugin_layer->getOutput(0), out_0_scale);
engine_->SetTensorDynamicRange(plugin_layer->getOutput(1), out_1_scale);

auto* shuffler_embed_out0 =
TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *(plugin_layer->getOutput(0)));
nvinfer1::Permutation transpose_0{2, 1, 0, 3};
shuffler_embed_out0->setSecondTranspose(transpose_0);
shuffler_embed_out0->getOutput(0)->setName(
op_desc.Output("Out_0")[0].c_str());
engine_->SetITensor(op_desc.Output("Out_0")[0],
shuffler_embed_out0->getOutput(0));
shuffler_embed_out0->setName(
("shuffler_after_CustomPrelnEmbLayerNormPluginDynamic_V3(Output_0: " +
op_desc.Output("Out_0")[0] + ")")
.c_str());

auto* shuffler_embed_out1 =
TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *(plugin_layer->getOutput(1)));
nvinfer1::Permutation transpose_1{2, 1, 0, 3};
shuffler_embed_out1->setSecondTranspose(transpose_1);
shuffler_embed_out1->getOutput(0)->setName(
op_desc.Output("Out_1")[0].c_str());

engine_->SetITensor(op_desc.Output("Out_1")[0],
shuffler_embed_out1->getOutput(0));
shuffler_embed_out1->setName(
("shuffler_after_CustomPrelnEmbLayerNormPluginDynamic_V3(Output_1: " +
op_desc.Output("Out_1")[0] + ")")
.c_str());

#else
PADDLE_THROW(platform::errors::Fatal(
"PreInErnie want to use oss, must be with interleaved, "
"your TRT version is no less than 7.0"));
#endif
}
};

} // namespace tensorrt
} // namespace inference
} // namespace paddle

REGISTER_TRT_OP_CONVERTER(fused_preln_embedding_eltwise_layernorm,
PrelnEmbEltwiseLayerNormOpConverter);
110 changes: 110 additions & 0 deletions paddle/fluid/inference/tensorrt/convert/preln_skip_layernorm.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,110 @@
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

namespace paddle {
namespace inference {
namespace tensorrt {

class PrelnSkipLayerNormOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope, bool test_mode) override {
#if IS_TRT_VERSION_GE(7000)
VLOG(4) << "convert fused preln_skip_layernorm op to tensorrt layer";
if (!(engine_->use_oss() && engine_->with_interleaved())) {
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

同上

PADDLE_THROW(platform::errors::Fatal(
"PrelnErnie: If you want to use oss, must be with interleaved"));
}
framework::OpDesc op_desc(op, nullptr);
bool enable_int8 = op_desc.HasAttr("enable_int8");
if (!enable_int8) {
PADDLE_THROW(
platform::errors::Fatal("use with_interleaved must be int8."));
}
// Declare inputs
auto* input1 = engine_->GetITensor(op_desc.Input("X")[0]);
auto* input2 = engine_->GetITensor(op_desc.Input("Y")[0]);
std::vector<nvinfer1::ITensor*> inputs;
inputs.push_back(input1);
inputs.push_back(input2);

auto get_persistable_data = [&](const std::string& arg_name,
framework::DDim* dims) -> float* {
std::string var_name = op_desc.Input(arg_name).front();
auto* temp_var = scope.FindVar(var_name);
auto* temp_tensor = temp_var->GetMutable<framework::LoDTensor>();
(*dims) = temp_tensor->dims();

auto* temp_data = engine_->GetWeightCPUData(var_name, temp_tensor, false);
return temp_data;
};

framework::DDim bias_dims, scale_dims;
auto* bias = get_persistable_data("Bias", &bias_dims);
auto* scale = get_persistable_data("Scale", &scale_dims);
int bias_size = framework::product(bias_dims);
int scale_size = framework::product(scale_dims);

nvinfer1::ILayer* layer = nullptr;

VLOG(4) << "fused preln_skip_layernorm op: use_oss and with_interleaved";

auto creator = GetPluginRegistry()->getPluginCreator(
"CustomSkipLayerNormPluginDynamic", "4");
PADDLE_ENFORCE_NE(
creator, nullptr,
platform::errors::InvalidArgument(
"fail to get creator of CustomPrelnSkipLayerNormPluginDynamic"));
const std::vector<nvinfer1::PluginField> fields{
{"beta", bias, nvinfer1::PluginFieldType::kFLOAT32, bias_size},
{ "gamma",
scale,
nvinfer1::PluginFieldType::kFLOAT32,
scale_size }};
nvinfer1::PluginFieldCollection* pluginPtr =
static_cast<nvinfer1::PluginFieldCollection*>(
malloc(sizeof(*pluginPtr) +
fields.size() * sizeof(nvinfer1::PluginField)));
pluginPtr->nbFields = static_cast<int>(fields.size());
pluginPtr->fields = fields.data();

auto pluginObj =
creator->createPlugin("CustomSkipLayerNormPluginDynamic", pluginPtr);
auto plugin_layer = engine_->network()->addPluginV2(
inputs.data(), inputs.size(), *pluginObj);

PADDLE_ENFORCE_NE(
plugin_layer, nullptr,
platform::errors::InvalidArgument(
"fail to add CustomPrelnSkipLayerNormPluginDynamic layer"));
layer = plugin_layer;

auto output_name = op_desc.Output("Out")[0];
RreplenishLayerAndOutput(layer, "preln_skip_layernorm", {output_name},
test_mode);
#else
PADDLE_THROW(platform::errors::Fatal(
"PreInErnie want to use oss, must be with interleaved, "
"your TRT version is no less than 7.0"));
#endif
}
};

} // namespace tensorrt
} // namespace inference
} // namespace paddle

REGISTER_TRT_OP_CONVERTER(preln_skip_layernorm, PrelnSkipLayerNormOpConverter);
Loading