Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[GPUPS]Config fleet optimize 2 #39783

Merged
merged 10 commits into from
Feb 22, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
160 changes: 160 additions & 0 deletions paddle/fluid/framework/ps_gpu_trainer.cc
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <google/protobuf/text_format.h>
#include <cstdlib>
#include <string>
#include <vector>
Expand All @@ -20,6 +21,7 @@ limitations under the License. */
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/data_set.h"
#include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/fleet/ps_gpu_wrapper.h"
#include "paddle/fluid/framework/trainer.h"
#if (defined PADDLE_WITH_NCCL || defined PADDLE_WITH_RCCL) && \
(defined PADDLE_WITH_PSLIB)
Expand All @@ -44,6 +46,164 @@ void PSGPUTrainer::Initialize(const TrainerDesc& trainer_desc,
dense_grad_names_[table_id][j] = table.dense_grad_name(j);
}
}
// add for hbmps optimizer config
auto fleet_desc_str = trainer_desc.fleet_desc();
google::protobuf::TextFormat::ParseFromString(fleet_desc_str, &_ps_param);
auto sparse_table =
_ps_param.server_param().downpour_server_param().downpour_table_param(0);
auto sparse_table_accessor = sparse_table.accessor();
auto sparse_table_accessor_parameter =
sparse_table_accessor.downpour_accessor_param();
auto accessor_class = sparse_table_accessor.accessor_class();
// gpups' sparse table optimizer config
// now only support single sparse table
// auto sparse_table = param_.sparse_table(0);
std::unordered_map<std::string, float> config;
if (accessor_class == "DownpourFeatureValueAccessor" ||
accessor_class == "DownpourCtrAccessor" ||
accessor_class == "DownpourCtrDoubleAccessor") {
config["nonclk_coeff"] = sparse_table_accessor_parameter.nonclk_coeff();
config["clk_coeff"] = sparse_table_accessor_parameter.click_coeff();
config["learning_rate"] =
sparse_table_accessor.sparse_sgd_param().learning_rate();
config["initial_g2sum"] =
sparse_table_accessor.sparse_sgd_param().initial_g2sum();
config["initial_range"] =
sparse_table_accessor.sparse_sgd_param().initial_range();
if (sparse_table_accessor.sparse_sgd_param().weight_bounds_size() == 2) {
config["min_bound"] =
sparse_table_accessor.sparse_sgd_param().weight_bounds()[0];
config["max_bound"] =
sparse_table_accessor.sparse_sgd_param().weight_bounds()[1];
}
config["mf_create_thresholds"] = sparse_table_accessor.embedx_threshold();
} else if (accessor_class == "DownpourSparseValueAccessor") {
auto optimizer_name = sparse_table_accessor.sparse_commonsgd_param().name();
if (optimizer_name == "naive") {
config["learning_rate"] = sparse_table_accessor.sparse_commonsgd_param()
.naive()
.learning_rate();
config["initial_range"] = sparse_table_accessor.sparse_commonsgd_param()
.naive()
.initial_range();
if (sparse_table_accessor.sparse_commonsgd_param()
.naive()
.weight_bounds_size() == 2) {
config["min_bound"] = sparse_table_accessor.sparse_commonsgd_param()
.naive()
.weight_bounds()[0];
config["max_bound"] = sparse_table_accessor.sparse_commonsgd_param()
.naive()
.weight_bounds()[1];
}
} else if (optimizer_name == "adagrad") {
config["learning_rate"] = sparse_table_accessor.sparse_commonsgd_param()
.adagrad()
.learning_rate();
config["initial_range"] = sparse_table_accessor.sparse_commonsgd_param()
.adagrad()
.initial_range();
config["initial_g2sum"] = sparse_table_accessor.sparse_commonsgd_param()
.adagrad()
.initial_g2sum();
if (sparse_table_accessor.sparse_commonsgd_param()
.adagrad()
.weight_bounds_size() == 2) {
config["min_bound"] = sparse_table_accessor.sparse_commonsgd_param()
.adagrad()
.weight_bounds()[0];
config["max_bound"] = sparse_table_accessor.sparse_commonsgd_param()
.adagrad()
.weight_bounds()[1];
}
} else if (optimizer_name == "adam") {
config["learning_rate"] =
sparse_table_accessor.sparse_commonsgd_param().adam().learning_rate();
config["initial_range"] =
sparse_table_accessor.sparse_commonsgd_param().adam().initial_range();
if (sparse_table_accessor.sparse_commonsgd_param()
.adam()
.weight_bounds_size() == 2) {
config["min_bound"] = sparse_table_accessor.sparse_commonsgd_param()
.adam()
.weight_bounds()[0];
config["max_bound"] = sparse_table_accessor.sparse_commonsgd_param()
.adam()
.weight_bounds()[1];
}
}
} else if (accessor_class == "DownpourUnitAccessor" ||
accessor_class == "DownpourDoubleUnitAccessor") {
config["nonclk_coeff"] = sparse_table_accessor_parameter.nonclk_coeff();
config["clk_coeff"] = sparse_table_accessor_parameter.click_coeff();
auto optimizer_name = sparse_table_accessor.embedx_sgd_param().name();
if (optimizer_name == "naive") {
config["mf_learning_rate"] =
sparse_table_accessor.embedx_sgd_param().naive().learning_rate();
config["mf_initial_range"] =
sparse_table_accessor.embedx_sgd_param().naive().initial_range();
if (sparse_table_accessor.embedx_sgd_param()
.naive()
.weight_bounds_size() == 2) {
config["mf_min_bound"] =
sparse_table_accessor.embedx_sgd_param().naive().weight_bounds()[0];
config["mf_max_bound"] =
sparse_table_accessor.embedx_sgd_param().naive().weight_bounds()[1];
}
} else if (optimizer_name == "adagrad") {
config["mf_learning_rate"] =
sparse_table_accessor.embedx_sgd_param().adagrad().learning_rate();
config["mf_initial_range"] =
sparse_table_accessor.embedx_sgd_param().adagrad().initial_range();
config["mf_initial_g2sum"] =
sparse_table_accessor.embedx_sgd_param().adagrad().initial_g2sum();
if (sparse_table_accessor.embedx_sgd_param()
.adagrad()
.weight_bounds_size() == 2) {
config["mf_min_bound"] = sparse_table_accessor.embedx_sgd_param()
.adagrad()
.weight_bounds()[0];
config["mf_max_bound"] = sparse_table_accessor.embedx_sgd_param()
.adagrad()
.weight_bounds()[1];
}
} else if (optimizer_name == "std_adagrad") {
config["mf_learning_rate"] =
sparse_table_accessor.embedx_sgd_param().adagrad().learning_rate();
config["mf_initial_range"] =
sparse_table_accessor.embedx_sgd_param().adagrad().initial_range();
config["mf_initial_g2sum"] =
sparse_table_accessor.embedx_sgd_param().adagrad().initial_g2sum();
if (sparse_table_accessor.embedx_sgd_param()
.adagrad()
.weight_bounds_size() == 2) {
config["mf_min_bound"] = sparse_table_accessor.embedx_sgd_param()
.adagrad()
.weight_bounds()[0];
config["mf_max_bound"] = sparse_table_accessor.embedx_sgd_param()
.adagrad()
.weight_bounds()[1];
}
} else if (optimizer_name == "adam") {
config["mf_learning_rate"] =
sparse_table_accessor.embedx_sgd_param().adam().learning_rate();
config["mf_initial_range"] =
sparse_table_accessor.embedx_sgd_param().adam().initial_range();
if (sparse_table_accessor.embedx_sgd_param()
.adam()
.weight_bounds_size() == 2) {
config["mf_min_bound"] =
sparse_table_accessor.embedx_sgd_param().adam().weight_bounds()[0];
config["mf_max_bound"] =
sparse_table_accessor.embedx_sgd_param().adam().weight_bounds()[1];
}
}
config["mf_create_thresholds"] = sparse_table_accessor.embedx_threshold();
}

auto ps_gpu_wrapper = paddle::framework::PSGPUWrapper::GetInstance();
ps_gpu_wrapper->InitializeGPUServer(config);

scale_datanorm_ = trainer_desc.scale_datanorm();
int place_num = trainer_desc.worker_places_size();
const std::vector<paddle::framework::DataFeed*> readers =
Expand Down
7 changes: 7 additions & 0 deletions paddle/fluid/framework/trainer.h
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,10 @@ limitations under the License. */
#include "paddle/fluid/operators/reader/blocking_queue.h"
#include "paddle/phi/backends/dynload/port.h"

#ifdef PADDLE_WITH_PSLIB
#include <pslib.h>
#endif

namespace paddle {
namespace framework {

Expand Down Expand Up @@ -287,6 +291,9 @@ class PSGPUTrainer : public TrainerBase {
int mpi_rank_;
int mpi_size_;
int dump_file_num_;

// _ps_param for gpups optimizer config
::paddle::PSParameter _ps_param;
};
#endif

Expand Down
3 changes: 3 additions & 0 deletions paddle/fluid/framework/trainer_desc.proto
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,9 @@ message TrainerDesc {
repeated int32 trainers = 35;
optional int32 trainer_id = 36;

// add for gpu
optional string fleet_desc = 37;

// device worker parameters
optional HogwildWorkerParameter hogwild_param = 101;
optional DownpourWorkerParameter downpour_param = 103;
Expand Down
4 changes: 4 additions & 0 deletions python/paddle/fluid/trainer_desc.py
Original file line number Diff line number Diff line change
Expand Up @@ -111,6 +111,10 @@ def _set_infer(self, infer):

def _set_fleet_desc(self, fleet_desc):
self._fleet_desc = fleet_desc
## serialize fleet_desc
from google.protobuf import text_format
fleet_desc_str = text_format.MessageToString(fleet_desc)
self.proto_desc.fleet_desc = fleet_desc_str

def _gen_trainer_desc(self):
pass
Expand Down