Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix unittests for eignvalsh #39841

Merged
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
40 changes: 25 additions & 15 deletions python/paddle/fluid/tests/unittests/test_eigvalsh_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,8 +60,12 @@ def setUp(self):
self.dtype = "float32"
np.random.seed(123)
self.x_np = np.random.random(self.x_shape).astype(self.dtype)
self.rtol = 1e-5
self.atol = 1e-5
if (paddle.version.cuda() >= "11.6"):
self.rtol = 5e-6
self.atol = 6e-5
else:
self.rtol = 1e-5
self.atol = 1e-5

def test_check_output_gpu(self):
if paddle.is_compiled_with_cuda():
Expand All @@ -75,23 +79,29 @@ def test_check_output_gpu(self):

class TestEigvalshAPI(unittest.TestCase):
def setUp(self):
self.init_input_shape()
self.x_shape = [5, 5]
self.dtype = "float32"
self.UPLO = 'L'
self.rtol = 1e-6
self.atol = 1e-6
if (paddle.version.cuda() >= "11.6"):
self.rtol = 5e-6
self.atol = 6e-5
else:
self.rtol = 1e-5
self.atol = 1e-5
self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
else paddle.CPUPlace()
np.random.seed(123)
self.init_input_data()

def init_input_data(self):
self.real_data = np.random.random(self.x_shape).astype(self.dtype)
self.complex_data = np.random.random(self.x_shape).astype(
complex_data = np.random.random(self.x_shape).astype(
self.dtype) + 1J * np.random.random(self.x_shape).astype(self.dtype)
self.trans_dims = list(range(len(self.x_shape) - 2)) + [
len(self.x_shape) - 1, len(self.x_shape) - 2
]

def init_input_shape(self):
self.x_shape = [5, 5]
self.complex_symm = np.divide(
complex_data + np.conj(complex_data.transpose(self.trans_dims)), 2)

def compare_result(self, actual_w, expected_w):
np.testing.assert_allclose(
Expand Down Expand Up @@ -122,9 +132,9 @@ def check_static_complex_result(self):
output_w = paddle.linalg.eigvalsh(input_x)
exe = paddle.static.Executor(self.place)
expected_w = exe.run(main_prog,
feed={"input_x": self.complex_data},
feed={"input_x": self.complex_symm},
fetch_list=[output_w])
actual_w = np.linalg.eigvalsh(self.complex_data)
actual_w = np.linalg.eigvalsh(self.complex_symm)
self.compare_result(actual_w, expected_w[0])

def test_in_static_mode(self):
Expand All @@ -139,14 +149,14 @@ def test_in_dynamic_mode(self):
actual_w = paddle.linalg.eigvalsh(input_real_data)
self.compare_result(actual_w, expected_w)

input_complex_data = paddle.to_tensor(self.complex_data)
expected_w = np.linalg.eigvalsh(self.complex_data)
actual_w = paddle.linalg.eigvalsh(input_complex_data)
input_complex_symm = paddle.to_tensor(self.complex_symm)
expected_w = np.linalg.eigvalsh(self.complex_symm)
actual_w = paddle.linalg.eigvalsh(input_complex_symm)
self.compare_result(actual_w, expected_w)

def test_eigvalsh_grad(self):
paddle.disable_static(self.place)
x = paddle.to_tensor(self.complex_data, stop_gradient=False)
x = paddle.to_tensor(self.complex_symm, stop_gradient=False)
w = paddle.linalg.eigvalsh(x)
(w.sum()).backward()
np.testing.assert_allclose(
Expand Down