Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[PHI] Support bmm and bmm_grad in xpu #45887

Merged
merged 7 commits into from
Sep 14, 2022
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion paddle/fluid/eager/utils.h
Original file line number Diff line number Diff line change
Expand Up @@ -223,7 +223,7 @@ class EagerUtils {
const std::vector<paddle::experimental::Tensor*>& out_var,
std::vector<paddle::experimental::Tensor>* result);

// end Intermidate needed
// end Intermidate needed.

static void CheckAndRetainGrad(const paddle::experimental::Tensor& tensor);
static void CheckAndRetainGrad(
Expand Down
226 changes: 0 additions & 226 deletions paddle/fluid/operators/bmm_op_xpu.cc

This file was deleted.

157 changes: 157 additions & 0 deletions paddle/phi/kernels/xpu/bmm_grad_kernel.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,157 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/bmm_grad_kernel.h"

#include "paddle/phi/backends/xpu/xpu_context.h"
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这个也可以移除

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/matmul_grad_kernel_impl.h"

// See Note [ Why still include the fluid headers? ]
#include "paddle/fluid/platform/device/xpu/xpu_header.h"
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这两个头文件看下是否可以移除

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

removed

#include "paddle/phi/kernels/xpu/xpu_api_wrapper.h"
namespace phi {

template <typename T, typename FCT>
static void MatMulXPUFunction(const DenseTensor& x,
const DenseTensor& y,
DenseTensor* out,
bool trans_x,
bool trans_y,
xpu::Context* xpu_ctx) {
using XPUType = typename XPUTypeTrait<T>::Type;
const auto& x_dims = x.dims();
const auto& y_dims = y.dims();

auto mat_dim_a = phi::funcs::CreateMatrixDescriptor(
RowMatrixFromVector(x_dims), 0, trans_x);
auto mat_dim_b = phi::funcs::CreateMatrixDescriptor(
ColumnMatrixFromVector(y_dims), 0, trans_y);

T* data_c = out->data<T>();
int m = mat_dim_a.height_;
int n = mat_dim_b.width_;
int k = mat_dim_a.width_;
int batch_size = mat_dim_a.batch_size_;
// batch matmul
int r = xpu::fc_batched<XPUType, XPUType, XPUType, FCT>(
xpu_ctx, // Context* ctx,
batch_size, // int batch_size,
mat_dim_a.trans_, // bool x_trans,
mat_dim_b.trans_, // bool w_trans,
m, // int m,
n, // int n,
k, // int k,
1.0, // float alpha,
reinterpret_cast<const XPUType*>(x.data<T>()), // const TX* x,
mat_dim_a.stride_, // int stride_a,
reinterpret_cast<const XPUType*>(y.data<T>()), // const TW* w,
mat_dim_b.stride_, // int stride_b,
0.0, // float beta,
reinterpret_cast<XPUType*>(data_c), // TY* y,
m * n, // int stride_c,
nullptr, // const float* x_maxptr,
nullptr); // const float* w_maxptr

PADDLE_ENFORCE_XDNN_SUCCESS(r, "fc_batched");
}

template <typename T, typename Context>
void MatMul(const Context& dev_ctx,
const DenseTensor& a,
bool trans_a,
const DenseTensor& b,
bool trans_b,
DenseTensor* out) {
dev_ctx.template Alloc<T>(out);
xpu::Context* xpu_ctx = dev_ctx.x_context();
if (std::is_same<paddle::platform::float16, T>::value) {
MatMulXPUFunction<T, int16_t>(a, b, out, trans_a, trans_b, xpu_ctx);
} else {
if (std::getenv("XPU_PADDLE_FC_INT32") != nullptr) {
MatMulXPUFunction<T, int32_t>(a, b, out, trans_a, trans_b, xpu_ctx);
} else if (std::getenv("XPU_PADDLE_FC_LOCAL_INT16") != nullptr) {
MatMulXPUFunction<T, float>(a, b, out, trans_a, trans_b, xpu_ctx);
} else {
MatMulXPUFunction<T, int16_t>(a, b, out, trans_a, trans_b, xpu_ctx);
}
}
}

template <typename T, typename Context>
void CalcInputGrad(const Context& dev_ctx,
const DenseTensor& a,
bool trans_a,
const DenseTensor& b,
bool trans_b,
DenseTensor* out) {
if (out == nullptr) return;
MatMul<T, Context>(dev_ctx, a, trans_a, b, trans_b, out);
}

template <typename T, typename Context>
void BmmGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& y,
const DenseTensor& out_grad,
DenseTensor* x_grad,
DenseTensor* y_grad) {
DenseTensor x_help = x;
DenseTensor y_help = y;
DenseTensor out_grad_help = out_grad;
ReshapeXYOutIntoMatrixSequence(
&x_help, &y_help, &out_grad_help, false, false);

phi::DDim dx_dims;
if (x_grad) {
dx_dims = x_grad->dims();
if (dx_dims != x_help.dims()) {
x_grad->Resize(x_help.dims());
}
}

phi::DDim dy_dims;
if (y_grad) {
dy_dims = y_grad->dims();
if (dy_dims != y_help.dims()) {
y_grad->Resize(y_help.dims());
}
}

CalcInputGrad<T, Context>(
dev_ctx, out_grad_help, false, y_help, true, x_grad);
CalcInputGrad<T, Context>(
dev_ctx, x_help, true, out_grad_help, false, y_grad);

if (x_grad) {
if (dx_dims != x_help.dims()) {
x_grad->Resize(dx_dims);
}
}
if (y_grad) {
if (dy_dims != y_help.dims()) {
y_grad->Resize(dy_dims);
}
}
}

} // namespace phi

PD_REGISTER_KERNEL(bmm_grad,
XPU,
ALL_LAYOUT,
phi::BmmGradKernel,
float,
paddle::platform::float16) {}
Loading