Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

"add sequence conv layer" #5117

Merged
merged 10 commits into from
Oct 30, 2017
85 changes: 83 additions & 2 deletions python/paddle/v2/framework/layers.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@

__all__ = [
'fc', 'data', 'cross_entropy', 'conv2d', 'pool2d', 'embedding', 'concat',
'StaticRNN', 'cast', 'batch_norm'
'StaticRNN', 'cast', 'sequence_conv', 'sequence_pool'
]


Expand Down Expand Up @@ -165,6 +165,18 @@ def func(**kwargs):
_create_op_func_('reshape')


def cast(x, data_type, program=None):
helper = LayerHelper('cast', **locals())
out = helper.create_tmp_variable(dtype=data_type)
helper.append_op(
type='cast',
inputs={'X': [x]},
outputs={'Out': [out]},
attrs={'in_data_type': x.data_type,
'out_data_type': out.data_type})
return out


def cast(x, data_type, program=None):
helper = LayerHelper('cast', **locals())
out = helper.create_tmp_variable(dtype=data_type)
Expand Down Expand Up @@ -220,6 +232,46 @@ def square_error_cost(input, label, **kwargs):
return square_out


def sequence_conv(input,
num_filters,
name=None,
filter_size=3,
act=None,
stride=1,
padding=None,
bias_attr=None,
param_attr=None,
program=None,
init_program=None):
# FIXME(dzh) : want to unify the argument of python layer
# function. So we ignore some unecessary attributes.
# such as, padding_trainable, context_start.

helper = LayerHelper('sequence_conv', **locals())
dtype = helper.input_dtype()

filter_shape = [num_filters, filter_size]
filter = helper.create_parameter(
attr=helper.param_attr, shape=filter_shape, dtype=dtype)
pre_bias = helper.create_tmp_variable(dtype)

helper.append_op(
type='sequence_conv',
inputs={
'X': [input],
'Filter': filter,
},
outputs={"Out": pre_bias},
attrs={
'context_stride': stride,
'context_start': 0,
'context_length': filter_size
})

pre_act = helper.append_bias_op(pre_bias)
return helper.append_activation(pre_act)


def conv2d(input,
num_filters,
name=None,
Expand Down Expand Up @@ -272,6 +324,35 @@ def conv2d(input,
return helper.append_activation(pre_act)


def sequence_pool(input,
pool_size,
pool_type,
pool_stride=1,
pool_padding=0,
global_pooling=False,
program=None,
init_program=None):
# FIXME(dzh) : want to unify the argument of python layer
# function. So we ignore some unecessary attributes

ENUM_POOL_TYPE = set(["max", "avg", "sqrt", "last", "first"])
if pool_type not in ENUM_POOL_TYPE:
raise ValueError("Unknown pool_type: '%s'. It can only be %s.",
str(pool_type), " ".join(ENUM_POOL_TYPE))

helper = LayerHelper('sequence_pool', **locals())
dtype = helper.input_dtype()
pool_out = helper.create_tmp_variable(dtype)

helper.append_op(
type="sequence_pool",
inputs={"X": [input]},
outputs={"Out": pool_out},
attrs={"strategy": pool_type})

return pool_out


def pool2d(input,
pool_size,
pool_type,
Expand All @@ -291,7 +372,7 @@ def pool2d(input,
if isinstance(pool_padding, int):
pool_padding = [pool_padding, pool_padding]

helper = LayerHelper('conv2d', **locals())
helper = LayerHelper('pool2d', **locals())
dtype = helper.input_dtype()
pool_out = helper.create_tmp_variable(dtype)

Expand Down
30 changes: 29 additions & 1 deletion python/paddle/v2/framework/nets.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,11 @@
import paddle.v2.framework.layers as layers

__all__ = ["simple_img_conv_pool", "sequence_conv_pool"]


def simple_img_conv_pool(input,
filter_size,
num_filters,
filter_size,
pool_size,
pool_stride,
act,
Expand Down Expand Up @@ -94,3 +96,29 @@ def __extend_list__(obj):
program=program,
init_program=init_program)
return pool_out


def sequence_conv_pool(input,
num_filters,
filter_size,
pool_size,
pool_stride,
act,
program=None,
init_program=None):
conv_out = layers.sequence_conv(
input=input,
num_filters=num_filters,
filter_size=filter_size,
act=act,
program=program,
init_program=init_program)

pool_out = layers.sequence_pool(
input=conv_out,
pool_size=pool_size,
pool_type='max',
pool_stride=pool_stride,
program=program,
init_program=init_program)
return pool_out