Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add ut for lookup_table_v2 op trt converter #53563

Merged
merged 1 commit into from
May 8, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
142 changes: 142 additions & 0 deletions test/ir/inference/test_trt_convert_lookup_table_v2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,142 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
from functools import partial
from typing import Any, Dict, List

import numpy as np
from program_config import ProgramConfig, TensorConfig
from trt_layer_auto_scan_test import TrtLayerAutoScanTest

import paddle.inference as paddle_infer


class TrtConvertLookupTableV2Test(TrtLayerAutoScanTest):
def sample_program_configs(self):
def generate_input1(dims, attrs: List[Dict[str, Any]]):
if dims == 1:
return np.array([32]).astype(np.int64)
elif dims == 2:
return np.array([[3, 16, 24], [6, 4, 47]]).astype(np.int64)
else:
return np.array(
[
[[3, 16, 24], [30, 16, 14], [2, 6, 24]],
[[3, 26, 34], [3, 16, 24], [3, 6, 4]],
[[3, 16, 24], [53, 16, 54], [30, 1, 24]],
]
).astype(np.int64)

def generate_input2(dims, attrs: List[Dict[str, Any]]):
return np.random.uniform(-1, 1, [64, 4]).astype('float32')

for dims in [1, 2, 3]:
self.dims = dims

ops_config = [
{
"op_type": "lookup_table_v2",
"op_inputs": {"Ids": ["indices"], "W": ["data"]},
"op_outputs": {"Out": ["out_data"]},
"op_attrs": {},
}
]
ops = self.generate_op_config(ops_config)

program_config = ProgramConfig(
ops=ops,
weights={
"data": TensorConfig(
data_gen=partial(generate_input2, {}, {})
)
},
inputs={
"indices": TensorConfig(
data_gen=partial(generate_input1, dims, {})
)
},
outputs=["out_data"],
)

yield program_config

def sample_predictor_configs(
self, program_config
) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
if self.dims == 1:
self.dynamic_shape.min_input_shape = {
"indices": [1],
"data": [64, 4],
}
self.dynamic_shape.max_input_shape = {
"indices": [1],
"data": [64, 4],
}
self.dynamic_shape.opt_input_shape = {
"indices": [1],
"data": [64, 4],
}
elif self.dims == 2:
self.dynamic_shape.min_input_shape = {
"indices": [2, 3],
"data": [64, 4],
}
self.dynamic_shape.max_input_shape = {
"indices": [2, 3],
"data": [64, 4],
}
self.dynamic_shape.opt_input_shape = {
"indices": [2, 3],
"data": [64, 4],
}
else:
self.dynamic_shape.min_input_shape = {
"indices": [3, 3, 3],
"data": [64, 4],
}
self.dynamic_shape.max_input_shape = {
"indices": [3, 3, 3],
"data": [64, 4],
}
self.dynamic_shape.opt_input_shape = {
"indices": [3, 3, 3],
"data": [64, 4],
}

def generate_trt_nodes_num(attrs, dynamic_shape):
return 1, 2

attrs = [
program_config.ops[i].attrs for i in range(len(program_config.ops))
]

# for dynamic_shape mode
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), (1e-3, 1e-3)

def test(self):
self.run_test()


if __name__ == "__main__":
unittest.main()
2 changes: 1 addition & 1 deletion test/ir/inference/test_trt_convert_p_norm.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@
import paddle.inference as paddle_infer


class TrtConvertCeluTest(TrtLayerAutoScanTest):
class TrtConvertPNormTest(TrtLayerAutoScanTest):
def sample_program_configs(self):
def generate_input1(dims, attrs: List[Dict[str, Any]]):
if dims == 1:
Expand Down