Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[inference Zero-Dim]add equal, elementwise_op trt 0d #53704

Merged
merged 2 commits into from
May 11, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
50 changes: 23 additions & 27 deletions paddle/fluid/inference/tensorrt/op_teller.cc
Original file line number Diff line number Diff line change
Expand Up @@ -114,6 +114,25 @@ struct SimpleOpTypeSetTeller : public Teller {
"sign", "silu", "logical_not", "reciprocal", "tanh_shrink",
"logsigmoid", "erf", "bitwise_not", "equal", "not_equal",
"rsqrt"};

// Static shape does not support 0 or 1 dim's input.
if (!with_dynamic_shape) {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这一块是抽出来统一判断吗

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

是的 每个OP判断有点冗余

auto inputs = desc.Inputs();
for (auto iter : inputs) {
for (auto var_name : iter.second) {
auto* block = desc.Block();
if (block) {
auto* var_desc = block->FindVar(var_name);
// Can't get feed op's TensorDesc
if (op_type != "feed" && var_desc && !var_desc->Persistable()) {
const auto shape = var_desc->GetShape();
if (shape.size() == 1 || shape.size() == 0) return false;
}
}
}
}
}

if (act_op_list.find(op_type) != act_op_list.end()) {
auto* block = desc.Block();
if (block == nullptr) {
Expand All @@ -122,47 +141,23 @@ struct SimpleOpTypeSetTeller : public Teller {
"the pass.";
return false;
}
auto x_var_name = desc.Input("X")[0];
auto* x_var_desc = block->FindVar(x_var_name);
const auto x_shape = x_var_desc->GetShape();
if (!with_dynamic_shape && (x_shape.size() == 1 || x_shape.size() == 0)) {
VLOG(3) << op_type
<< " op does not support input's dim is 1 or 0 in tensorrt "
"static shape mode.";
return false;
}
#if !IS_TRT_VERSION_GE(7000)
if (op_type == "erf") {
VLOG(3) << op_type << " op does not support tensorrt.";
return false;
}
#endif
#if !IS_TRT_VERSION_GE(8600)
auto x_var_name = desc.Input("X")[0];
auto* x_var_desc = block->FindVar(x_var_name);
const auto x_shape = x_var_desc->GetShape();
if (x_shape.size() == 0 && unary_list.find(op_type) != unary_list.end()) {
VLOG(3) << op_type
<< " op does not support 0 dim input when TensorRT < 8.6.";
return false;
}
#endif
}
// In static shape in Paddle-TRT, we can't allow that one op has a
// 1D intermediate tensor as input.
if (!with_dynamic_shape) {
auto inputs = desc.Inputs();
for (auto iter : inputs) {
for (auto var_name : iter.second) {
auto* block = desc.Block();
if (block) {
auto* var_desc = block->FindVar(var_name);
// Can't get feed op's TensorDesc
if (op_type != "feed" && var_desc && !var_desc->Persistable()) {
const auto shape = var_desc->GetShape();
if (shape.size() == 1) return false;
}
}
}
}
}

if (op_type == "dropout") {
/*
Expand Down Expand Up @@ -1505,6 +1500,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"elementwise op.";
return false;
}

if (x_var_desc->Persistable() && !with_dynamic_shape) {
VLOG(3)
<< "Input X is a parameter which is not supported for "
Expand Down
156 changes: 156 additions & 0 deletions test/ir/inference/test_trt_convert_elementwise.py
Original file line number Diff line number Diff line change
Expand Up @@ -1214,5 +1214,161 @@ def test(self):
self.run_test()


class TrtConvertElementwise0D(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True

def sample_program_configs(self):
def generate_input(dims, op_type):
shape = []
if dims == 0:
shape = []
elif dims == 1:
shape = [8]
elif dims == 2:
shape = [1, 8]
elif dims == 3:
shape = [1, 8, 8]
else:
shape = [1, 8, 8, 8]

# elementwise_floordiv is integer only
if op_type == "elementwise_floordiv":
return np.random.randint(
low=1, high=10000, size=shape, dtype=np.int32
)
elif op_type == "elementwise_mod":
return np.random.uniform(low=0.1, high=1.0, size=shape).astype(
np.float32
)
else:
return np.random.random(shape).astype(np.float32)

for dims in [[0, 0], [0, 1], [0, 2], [1, 0], [2, 0]]:
for op_type in [
"elementwise_add",
"elementwise_mul",
"elementwise_sub",
"elementwise_div",
"elementwise_pow",
"elementwise_min",
"elementwise_max",
"elementwise_floordiv",
"elementwise_mod",
]:
for axis in [-1 if dims[0] == 1 or dims[0] == 0 else 1]:
self.dims = dims[0]
dics = [{"axis": axis}]
ops_config = [
{
"op_type": op_type,
"op_inputs": {
"X": ["input_data"],
"Y": ["weight"],
},
"op_outputs": {"Out": ["output_data"]},
"op_attrs": dics[0],
"outputs_dtype": {
"output_data": np.float32
if op_type != "elementwise_floordiv"
else np.int32
},
}
]
ops = self.generate_op_config(ops_config)

program_config = ProgramConfig(
ops=ops,
weights={
"weight": TensorConfig(
data_gen=partial(
generate_input, dims[1], op_type
)
)
},
inputs={
"input_data": TensorConfig(
data_gen=partial(
generate_input, dims[0], op_type
)
),
},
outputs=["output_data"],
)

yield program_config

def sample_predictor_configs(
self, program_config
) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
# The input.dims[1] must be equal to the weight's length.
if self.dims == 0:
self.dynamic_shape.min_input_shape = {"input_data": []}
self.dynamic_shape.max_input_shape = {"input_data": []}
self.dynamic_shape.opt_input_shape = {"input_data": []}
if self.dims == 1:
self.dynamic_shape.min_input_shape = {"input_data": [1]}
self.dynamic_shape.max_input_shape = {"input_data": [16]}
self.dynamic_shape.opt_input_shape = {"input_data": [8]}
elif self.dims == 2:
self.dynamic_shape.min_input_shape = {"input_data": [1, 8]}
self.dynamic_shape.max_input_shape = {"input_data": [4, 8]}
self.dynamic_shape.opt_input_shape = {"input_data": [2, 8]}
elif self.dims == 3:
self.dynamic_shape.min_input_shape = {"input_data": [1, 1, 4]}
self.dynamic_shape.max_input_shape = {"input_data": [4, 16, 16]}
self.dynamic_shape.opt_input_shape = {"input_data": [2, 8, 8]}
elif self.dims == 4:
self.dynamic_shape.min_input_shape = {
"input_data": [1, 8, 8, 8]
}
self.dynamic_shape.max_input_shape = {
"input_data": [4, 8, 8, 8]
}
self.dynamic_shape.opt_input_shape = {
"input_data": [4, 8, 8, 8]
}

def clear_dynamic_shape():
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.opt_input_shape = {}

def generate_trt_nodes_num(attrs, dynamic_shape):
if not dynamic_shape and (self.dims == 1 or self.dims == 0):
return 0, 3
return 1, 2

attrs = [
program_config.ops[i].attrs for i in range(len(program_config.ops))
]

# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False
), (1e-5, 1e-5)
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False
), (1e-3, 1e-3)

# # for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), (1e-5, 1e-5)
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), (1e-3, 1e-3)

def test(self):
self.run_test()


if __name__ == "__main__":
unittest.main()
92 changes: 51 additions & 41 deletions test/ir/inference/test_trt_convert_equal.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,54 +40,64 @@ def generate_input(shape):
return np.random.random(shape).astype(np.float32)

for op_type in ["equal", "not_equal"]:
for batch in [1, 2, 4]:
for shape in [[batch, 1], [batch, 1, 32], [batch, 1, 16, 32]]:
for axis in [-1 if len(shape) == 1 else 1]:
self.dims = len(shape)
dics = [{"axis": axis}, {"in_dtype": 0, "out_dtype": 5}]
ops_config = [
{
"op_type": op_type,
"op_inputs": {
"X": ["input_data1"],
"Y": ["input_data2"],
},
"op_outputs": {"Out": ["compare_output_data"]},
"op_attrs": dics[0],
"outputs_dtype": {
"compare_output_data": np.bool_
},
for shape in [[], [1, 1], [1, 1, 32], [1, 1, 16, 32]]:
for axis in [-1 if len(shape) == 1 or len(shape) == 0 else 1]:
self.dims = len(shape)
dics = [{"axis": axis}, {"in_dtype": 0, "out_dtype": 5}]
ops_config = [
{
"op_type": op_type,
"op_inputs": {
"X": ["input_data1"],
"Y": ["input_data2"],
},
{
"op_type": "cast",
"op_inputs": {"X": ["compare_output_data"]},
"op_outputs": {"Out": ["output_data"]},
"op_attrs": dics[1],
"outputs_dtype": {"output_data": np.float32},
},
]
ops = self.generate_op_config(ops_config)

program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input_data1": TensorConfig(
data_gen=partial(generate_input, shape)
),
"input_data2": TensorConfig(
data_gen=partial(generate_input, shape)
),
},
outputs=["output_data"],
)
yield program_config
"op_outputs": {"Out": ["compare_output_data"]},
"op_attrs": dics[0],
"outputs_dtype": {"compare_output_data": np.bool_},
},
{
"op_type": "cast",
"op_inputs": {"X": ["compare_output_data"]},
"op_outputs": {"Out": ["output_data"]},
"op_attrs": dics[1],
"outputs_dtype": {"output_data": np.float32},
},
]
ops = self.generate_op_config(ops_config)

program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input_data1": TensorConfig(
data_gen=partial(generate_input, shape)
),
"input_data2": TensorConfig(
data_gen=partial(generate_input, shape)
),
},
outputs=["output_data"],
)
yield program_config

def sample_predictor_configs(
self, program_config
) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
# The input.dims[1] must be equal to the weight's length.
if self.dims == 0:
self.dynamic_shape.min_input_shape = {
"input_data1": [],
"input_data2": [],
}
self.dynamic_shape.max_input_shape = {
"input_data1": [],
"input_data2": [],
}
self.dynamic_shape.opt_input_shape = {
"input_data1": [],
"input_data2": [],
}
if self.dims == 2:
self.dynamic_shape.min_input_shape = {
"input_data1": [1, 1],
Expand Down