-
Notifications
You must be signed in to change notification settings - Fork 5.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add nce op #5480
Add nce op #5480
Changes from all commits
3d27627
c2dd75b
09d32b0
668dc53
e60eb1e
ea7359c
d0246e2
ab9d59c
76a65a8
29262ab
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,186 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/operators/nce_op.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
using framework::Tensor; | ||
|
||
class NCEOp : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
||
void InferShape(framework::InferShapeContext* ctx) const override { | ||
PADDLE_ENFORCE(ctx->HasInput("Input")); | ||
PADDLE_ENFORCE(ctx->HasInput("Label")); | ||
PADDLE_ENFORCE(ctx->HasInput("Weight")); | ||
PADDLE_ENFORCE(ctx->HasOutput("Cost")); | ||
PADDLE_ENFORCE(ctx->HasOutput("SampleLogits")); | ||
PADDLE_ENFORCE(ctx->HasOutput("SampleLabels")); | ||
|
||
auto x_dims = ctx->GetInputDim("Input"); | ||
auto label_dims = ctx->GetInputDim("Label"); | ||
PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0]); | ||
int num_true_classes = label_dims.size() == 2 ? label_dims[1] : 1; | ||
if (ctx->HasInput("Bias")) { | ||
PADDLE_ENFORCE_EQ(ctx->GetInputDim("Weight")[0], | ||
ctx->GetInputDim("Bias")[0]); | ||
} | ||
auto num_neg_samples = ctx->Attrs().Get<int>("num_neg_samples"); | ||
auto num_total_classes = ctx->Attrs().Get<int>("num_total_classes"); | ||
std::vector<int> custom_neg_classes = | ||
ctx->Attrs().Get<std::vector<int>>("custom_neg_classes"); | ||
PADDLE_ENFORCE_EQ(num_total_classes, ctx->GetInputDim("Weight")[0]); | ||
if (custom_neg_classes.size() > 0) { | ||
PADDLE_ENFORCE_EQ(custom_neg_classes.size(), | ||
static_cast<size_t>(num_neg_samples)); | ||
} | ||
// set dims of output(Out) | ||
std::vector<int64_t> out_dims; | ||
out_dims.push_back(x_dims[0]); | ||
out_dims.push_back(1); | ||
ctx->SetOutputDim("Cost", framework::make_ddim(out_dims)); | ||
|
||
// set dims of output(SampleOut) | ||
std::vector<int64_t> sample_out_dims; | ||
sample_out_dims.push_back(x_dims[0]); | ||
sample_out_dims.push_back(num_neg_samples + num_true_classes); | ||
ctx->SetOutputDim("SampleLogits", framework::make_ddim(sample_out_dims)); | ||
ctx->SetOutputDim("SampleLabels", framework::make_ddim(sample_out_dims)); | ||
} | ||
|
||
protected: | ||
framework::OpKernelType GetKernelType( | ||
const framework::ExecutionContext& ctx) const override { | ||
return framework::OpKernelType( | ||
framework::ToDataType(ctx.Input<Tensor>("Input")->type()), | ||
ctx.device_context()); | ||
} | ||
}; | ||
|
||
class NCEOpMaker : public framework::OpProtoAndCheckerMaker { | ||
public: | ||
NCEOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) | ||
: OpProtoAndCheckerMaker(proto, op_checker) { | ||
AddInput("Input", "(Tensor) A tensor of shape [batch_size, dim]."); | ||
AddInput( | ||
"Label", | ||
"(Tensor) A tensor of shape [batch_size, num_true_class]. " | ||
"'num_true_class' is the number of target classes in each sample." | ||
"The number of target classes per sample should be same. " | ||
"If you have a variable number of target classes, " | ||
"you can pad them out to a constant number by either repeating them" | ||
" or by padding with an otherwise unused class.)"); | ||
AddInput("Weight", | ||
"(Tensor) A tensor of shape [num_class, dim]. 'num_class' is the " | ||
"total number of class."); | ||
AddInput( | ||
"Bias", | ||
"(Tensor) A tensor of shape [num_class, 1]. 'num_class' is the total " | ||
"number of class. It is a dispensable input.") | ||
.AsDispensable(); | ||
AddInput("SampleWeight", | ||
"(Tensor) A tensor of shape [batch_size, 1] storing a weight for " | ||
"each sample. And it is a dispensable input. The default value of " | ||
"sample is 1.") | ||
.AsDispensable(); | ||
AddOutput("Cost", | ||
"(Tensor) A tensor of shape [batch_size, 1]. Cost of samples."); | ||
AddOutput("SampleLogits", | ||
"An intermediate tensor of shape[batch_size, num_neg_samples + " | ||
"num_pos_samples]." | ||
"This tensor is output of forward kernel and used in backward " | ||
"kernel to compute grads." | ||
"Given X is the dot product of input tensor and sampled labels' " | ||
"weights." | ||
"Then 'SampleLogits' is sigmoid(X).") | ||
.AsIntermediate(); | ||
AddOutput("SampleLabels", | ||
"An intermediate tensor of shape[batch_size, num_neg_samples + " | ||
"num_pos_samples]." | ||
"This tensor is output of forward kernel and used in backward " | ||
"kernel to compute grads." | ||
"") | ||
.AsIntermediate(); | ||
AddAttr<int>("num_total_classes", | ||
"Total number of classes in all samples."); | ||
AddAttr<int>("num_neg_samples", | ||
"The number of negative classes. The default value is 10.") | ||
.SetDefault(10); | ||
AddAttr<std::vector<int>>("custom_neg_classes", | ||
"This attribute only be used in unitest. Classes " | ||
"in this list wiil be used as negative classes " | ||
"for every samples. Under normal conditions, " | ||
"user should avoid setting this attribute."); | ||
AddComment(R"DOC( | ||
Compute and return the noise-contrastive estimation training loss. | ||
See [Noise-contrastive estimation: A new estimation principle for unnormalized statistical models](http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf). | ||
By default this operator uses a uniform distribution for sampling. | ||
)DOC"); | ||
} | ||
}; | ||
|
||
class NCEOpGrad : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
||
void InferShape(framework::InferShapeContext* ctx) const override { | ||
PADDLE_ENFORCE(ctx->HasInput("Input")); | ||
PADDLE_ENFORCE(ctx->HasInput("Weight")); | ||
PADDLE_ENFORCE(ctx->HasInput("Cost")); | ||
PADDLE_ENFORCE(ctx->HasInput("SampleLogits")); | ||
PADDLE_ENFORCE(ctx->HasInput("SampleLabels")); | ||
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Cost")), | ||
"The input(Out@GRAD) should not be null."); | ||
|
||
auto x_dims = ctx->GetInputDim("Input"); | ||
auto x_grad_name = framework::GradVarName("Input"); | ||
if (ctx->HasOutput(x_grad_name)) { | ||
ctx->SetOutputDim(x_grad_name, x_dims); | ||
} | ||
|
||
auto w_dims = ctx->GetInputDim("Weight"); | ||
auto w_grad_name = framework::GradVarName("Weight"); | ||
if (ctx->HasOutput(w_grad_name)) { | ||
ctx->SetOutputDim(w_grad_name, w_dims); | ||
} | ||
|
||
auto bias_grad_name = framework::GradVarName("Bias"); | ||
if (ctx->HasOutput(bias_grad_name)) { | ||
auto bias_dims = ctx->GetInputDim("Bias"); | ||
ctx->SetOutputDim(bias_grad_name, bias_dims); | ||
} | ||
} | ||
|
||
protected: | ||
framework::OpKernelType GetKernelType( | ||
const framework::ExecutionContext& ctx) const override { | ||
return framework::OpKernelType( | ||
framework::ToDataType(ctx.Input<Tensor>("Input")->type()), | ||
ctx.device_context()); | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
REGISTER_OP(nce, ops::NCEOp, ops::NCEOpMaker, nce_grad, ops::NCEOpGrad); | ||
REGISTER_OP_CPU_KERNEL(nce, ops::NCEKernel<paddle::platform::CPUPlace, float>, | ||
ops::NCEKernel<paddle::platform::CPUPlace, double>); | ||
REGISTER_OP_CPU_KERNEL(nce_grad, | ||
ops::NCEGradKernel<paddle::platform::CPUPlace, float>, | ||
ops::NCEGradKernel<paddle::platform::CPUPlace, double>); |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,211 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. The indentation should like that in nce_op.cc |
||
|
||
#pragma once | ||
|
||
#include <math.h> | ||
#include <random> | ||
#include "paddle/framework/eigen.h" | ||
#include "paddle/framework/op_registry.h" | ||
#include "unsupported/Eigen/CXX11/Tensor" | ||
namespace paddle { | ||
namespace operators { | ||
|
||
using Tensor = framework::Tensor; | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. using framework::Tensor; There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Fixed. |
||
|
||
template <typename T, int MajorType = Eigen::RowMajor, | ||
typename IndexType = Eigen::DenseIndex> | ||
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>; | ||
|
||
template <typename Place, typename T> | ||
void PrepareSamples(const framework::ExecutionContext& context) { | ||
auto label = context.Input<Tensor>("Label"); | ||
const int64_t* label_data = label->data<int64_t>(); | ||
auto label_dims = label->dims(); | ||
int num_total_classes = context.Attr<int>("num_total_classes"); | ||
// for unitest | ||
std::vector<int> custom_neg_classes = | ||
context.Attr<std::vector<int>>("custom_neg_classes"); | ||
// random machine | ||
std::random_device rd; | ||
std::mt19937 rng(rd()); | ||
std::uniform_int_distribution<int> rand(0, num_total_classes - 1); | ||
|
||
auto sample_labels = context.Output<Tensor>("SampleLabels"); | ||
auto sample_labels_dims = sample_labels->dims(); | ||
int64_t* sample_labels_data = | ||
sample_labels->mutable_data<int64_t>(context.GetPlace()); | ||
|
||
int num_label = label_dims.size() == 2 ? label_dims[1] : 1; | ||
int index = 0; | ||
for (size_t i = 0; i < label_dims[0]; ++i) { | ||
int j = 0; | ||
for (; j < num_label; ++j) { | ||
sample_labels_data[index++] = label_data[i * num_label + j]; | ||
} | ||
if (custom_neg_classes.size() > 0) { | ||
for (auto label : custom_neg_classes) { | ||
sample_labels_data[index++] = label; | ||
} | ||
} else { | ||
for (; j < sample_labels_dims[1]; ++j) { | ||
// TODO(wanghaoshuang): support more distribution sampling | ||
sample_labels_data[index++] = rand(rng); | ||
} | ||
} | ||
} | ||
} | ||
|
||
template <typename Place, typename T> | ||
class NCEKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& context) const override { | ||
PrepareSamples<Place, T>(context); | ||
auto sample_labels = context.Output<Tensor>("SampleLabels"); | ||
const int64_t* sample_labels_data = sample_labels->data<int64_t>(); | ||
auto sample_out = context.Output<Tensor>("SampleLogits"); | ||
T* sample_out_data = sample_out->mutable_data<T>(context.GetPlace()); | ||
auto label = context.Input<Tensor>("Label"); | ||
auto sample_weight = context.Input<Tensor>("SampleWeight"); | ||
const T* sample_weight_data = nullptr; | ||
if (sample_weight != nullptr) { | ||
sample_weight_data = sample_weight->data<T>(); | ||
} | ||
auto out = context.Output<Tensor>("Cost"); | ||
T* out_data = out->mutable_data<T>(context.GetPlace()); | ||
int num_neg_samples = context.Attr<int>("num_neg_samples"); | ||
int num_total_classes = context.Attr<int>("num_total_classes"); | ||
int num_true_class = 1; | ||
if (label != nullptr) { | ||
num_true_class = label->dims()[1]; | ||
} | ||
T b = 1. / num_total_classes * num_neg_samples; | ||
// forward bias | ||
auto bias = context.Input<Tensor>("Bias"); | ||
if (bias != nullptr) { | ||
const T* bias_data = bias->data<T>(); | ||
for (size_t i = 0; i < sample_labels->numel(); ++i) { | ||
sample_out_data[i] = bias_data[sample_labels_data[i]]; | ||
} | ||
} else { | ||
for (size_t i = 0; i < sample_labels->numel(); ++i) { | ||
sample_out_data[i] = 0; | ||
} | ||
} | ||
// forward mul | ||
auto input_mat = EigenMatrix<T>::From(*(context.Input<Tensor>("Input"))); | ||
auto weight_mat = EigenMatrix<T>::From(*(context.Input<Tensor>("Weight"))); | ||
for (size_t i = 0; i < sample_labels->numel(); ++i) { | ||
Eigen::Tensor<T, 0, Eigen::RowMajor, Eigen::DenseIndex> result = | ||
(input_mat.chip((int)(i / sample_labels->dims()[1]), 0) * | ||
weight_mat.chip(sample_labels_data[i], 0)) | ||
.sum(); | ||
sample_out_data[i] += result(0); | ||
sample_out_data[i] = (1. / (1. + exp(-sample_out_data[i]))); | ||
} | ||
// forward cost | ||
for (size_t i = 0; i < sample_labels->dims()[0]; ++i) { | ||
size_t j = 0; | ||
out_data[i] = 0; | ||
T w = sample_weight == nullptr ? 1. : sample_weight_data[i]; | ||
// for true classes | ||
for (; j < num_true_class; ++j) { | ||
T o = sample_out_data[i * sample_out->dims()[1] + j]; | ||
T cost = -log(o / (o + b)); | ||
out_data[i] += w * cost; | ||
} | ||
// for sampled neg classes | ||
for (; j < sample_labels->dims()[1]; ++j) { | ||
T o = sample_out_data[i * sample_out->dims()[1] + j]; | ||
T cost = -log(b / (o + b)); | ||
out_data[i] += w * cost; | ||
} | ||
} | ||
} | ||
}; | ||
|
||
template <typename Place, typename T> | ||
class NCEGradKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& context) const override { | ||
auto d_out = context.Input<Tensor>(framework::GradVarName("Cost")); | ||
const T* d_out_data = d_out->data<T>(); | ||
auto label = context.Input<Tensor>("Label"); | ||
auto sample_out = context.Input<Tensor>("SampleLogits"); | ||
const T* sample_out_data = sample_out->data<T>(); | ||
auto sample_labels = context.Input<Tensor>("SampleLabels"); | ||
const int64_t* sample_labels_data = sample_labels->data<int64_t>(); | ||
auto sample_weight = context.Input<Tensor>("SampleWeight"); | ||
const T* sample_weight_data = nullptr; | ||
if (sample_weight != nullptr) { | ||
sample_weight_data = sample_weight->data<T>(); | ||
} | ||
int num_neg_samples = context.Attr<int>("num_neg_samples"); | ||
int num_total_classes = context.Attr<int>("num_total_classes"); | ||
int num_true_class = 1; | ||
if (label != nullptr) { | ||
num_true_class = label->dims()[1]; | ||
} | ||
T b = 1. / num_total_classes * num_neg_samples; | ||
Tensor sample_grad; // tmp tensor | ||
T* sample_grad_data = | ||
sample_grad.mutable_data<T>(sample_labels->dims(), context.GetPlace()); | ||
// backward cost | ||
for (size_t i = 0; i < sample_labels->numel(); ++i) { | ||
T o = sample_out_data[i]; | ||
T w = sample_weight == nullptr | ||
? 1 | ||
: sample_weight_data[i / sample_labels->dims()[1]]; | ||
sample_grad_data[i] = (i % sample_labels->dims()[1]) < num_true_class | ||
? w * (b / (o + b)) * (o - 1) | ||
: w * (o * (1 - o) / (o + b)); | ||
sample_grad_data[i] *= d_out_data[i / sample_labels->dims()[1]]; | ||
} | ||
// get d_bias | ||
auto d_bias = context.Output<Tensor>(framework::GradVarName("Bias")); | ||
if (d_bias != nullptr) { | ||
T* d_bias_data = d_bias->mutable_data<T>(context.GetPlace()); | ||
std::fill(d_bias_data, d_bias_data + d_bias->numel(), 0.0); | ||
for (size_t i = 0; i < sample_labels->numel(); ++i) { | ||
d_bias_data[sample_labels_data[i]] += sample_grad_data[i]; | ||
} | ||
} | ||
// get d_w | ||
auto d_w = context.Output<Tensor>(framework::GradVarName("Weight")); | ||
if (d_w != nullptr) { | ||
auto d_w_data = d_w->mutable_data<T>(context.GetPlace()); | ||
std::fill(d_w_data, d_w_data + d_w->numel(), 0.0); | ||
auto d_w_matrix = EigenMatrix<T>::From(*d_w); | ||
auto x_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Input"))); | ||
for (size_t i = 0; i < sample_labels->numel(); ++i) { | ||
d_w_matrix.chip(sample_labels_data[i], 0) += | ||
x_matrix.chip((int)(i / sample_labels->dims()[1]), 0) * | ||
sample_grad_data[i]; | ||
} | ||
} | ||
// get d_x | ||
auto d_x = context.Output<Tensor>(framework::GradVarName("Input")); | ||
if (d_x != nullptr) { | ||
d_x->mutable_data<T>(context.GetPlace()); | ||
auto d_x_matrix = EigenMatrix<T>::From(*d_x); | ||
auto w_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Weight"))); | ||
for (size_t i = 0; i < sample_labels->numel(); ++i) { | ||
d_x_matrix.chip((int)(i / sample_labels->dims()[1]), 0) += | ||
w_matrix.chip(sample_labels_data[i], 0) * sample_grad_data[i]; | ||
} | ||
} | ||
} | ||
}; | ||
} // namespace operators | ||
} // namespace paddle |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I have a question here. From the current implementation, this operator only supports uniform distribution which is hardcoded. How can we extend the codes to support more distribution? Should we make distribution method an attribute, or leave the sampling process outside this operator? What is your suggestion?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Yes. You are right. More distribution sampler is necessary. The terms in NLP application always meet heavy-tailed distribution. So we need a long uniform distribution sampler. And the distribution`s PDF is 1/(x+1)lnR in which R is the range of sampling. I will implement the log uniform sampler and other common distribution samplers as independent math function in another pr.