New Features
-
The new version 1.0 of Paddle3D is released, which provides the following features
-
We supports multiple type of 3D perception models, including monocular 3D models SMOKE/CaDDN/DD3D, pointcloud detection models PointPillars/CenterPoint/IA-SSD/PV-RCNN/Voxel R-CNN, BEV visual detection models PETR/PETRv2/BEVFormer, and pointcloud segmentation model SqueezeSegv3
-
We added support for Waymo datasets and now Paddle3D has completed full support for the three open source datasets for autonomous driving
-
Supports automatic mixed-precision training and quantitative deployment capabilities, providing better model acceleration capabilities
-
Supports for sparse convolution, and integrated related SOTA models that are easy to deploy
-
We continue to cooperate with Apollo team to provide one-click deployment of multiple models and integrate them into the perception algorithm part of Apollo to make it easier for developers to debug models
-
新特性
-
全部发布Paddle3D 1.0版本,提供了以下特性:
-
支持多种3D感知模型,包括单目3D模型SMOKE/CaDDN/DD3D,点云检测模型 PointPillars/CenterPoint/IA-SSD/PV-RCNN/Voxel R-CNN,BEV视觉检测模型 PETR/PETRv2/BEVFormer,点云分割模型SqueezeSegv3
-
新增Waymo数据集支持,完成了对自动驾驶三大开源数据集的全面支持
-
支持自动混合精度训练以及量化部署能力,提供更好的模型加速能力
-
新增了对稀疏卷积能力的支持,并集成了稀疏卷积方向的SOTA模型,模型训推一体,便于部署
-
持续与Apollo进行合作开发,提供多个模型一键部署集成到Apollo的感知算法部分,便于开发者更好地进行模型调试
-