-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
using the huggingface plan and drop the cache
- Loading branch information
Showing
1 changed file
with
67 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,67 @@ | ||
import torch | ||
import paddle | ||
import numpy as np | ||
from reprod_log import ReprodDiffHelper | ||
from reprod_log import ReprodLogger | ||
from paddle import nn | ||
from ppcls.arch.backbone.legendary_models import open_clip as clip_paddle | ||
import open_clip as clip_torch | ||
|
||
MODEL_param = { | ||
"react": "pretrain_model_torch/react.pt", | ||
"laclip": "pretrain_model_torch/laclip.pt", | ||
"unicom": "pretrain_model_torch/unicom.pt", | ||
} | ||
|
||
|
||
def torch_to_numpy(name, x: torch.nn.Module): | ||
try: | ||
ckpt = torch.load(MODEL_param[name])["state_dict"] | ||
except: | ||
ckpt = torch.load(MODEL_param[name]) | ||
x.load_state_dict(ckpt) | ||
state_dict_vision = x.visual.state_dict() | ||
state_numpy = {} | ||
for k in state_dict_vision.keys(): | ||
state_numpy[k] = state_dict_vision[k].numpy() | ||
return x.visual, state_numpy | ||
|
||
|
||
def numpy_to_paddle(state_dict_numpy, x: paddle.nn.Layer): | ||
state_paddle = {} | ||
a = x.visual.state_dict() | ||
for k in state_dict_numpy.keys(): | ||
state_paddle[k] = paddle.to_tensor(state_dict_numpy[k]) | ||
|
||
x.visual.set_state_dict(state_paddle) | ||
return x.visual | ||
|
||
|
||
if __name__ == "__main__": | ||
torch.manual_seed(0) | ||
paddle.seed(0) | ||
vit_b_32_paddle = clip_paddle.Laclip_vit_b_32() | ||
vit_b_32_torch = clip_torch.create_model("ViT-B-32") | ||
vision_torch, state_dict_paddle = torch_to_numpy("laclip", vit_b_32_torch) | ||
vision_paddle = numpy_to_paddle(state_dict_paddle, vit_b_32_paddle) | ||
input = torch.ones([1, 3, 224, 224]).numpy() | ||
reprod_logger = ReprodLogger() | ||
vision_torch.eval() | ||
vision_paddle.eval() | ||
|
||
paddle_out = vision_paddle(paddle.to_tensor(input)) | ||
reprod_logger.add("logits", paddle_out.numpy()) | ||
reprod_logger.save("./result/forward_paddle.npy") | ||
|
||
torch_out = vision_torch(torch.Tensor(input)) | ||
reprod_logger.add("logits", torch_out.detach().numpy()) | ||
reprod_logger.save("./result/forward_torch.npy") | ||
|
||
diff_helper = ReprodDiffHelper() | ||
torch_info = diff_helper.load_info("./result/forward_torch.npy") | ||
paddle_info = diff_helper.load_info("./result/forward_paddle.npy") | ||
|
||
# compare result and produce log | ||
diff_helper.compare_info(torch_info, paddle_info) | ||
diff_helper.report( | ||
path="./result/log/forward_diff.log", diff_threshold=1e-5) |